Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4102 Publications

Showing 2861-2870 of 4102 results
07/08/05 | Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity.
Lisman J, Spruston N
Nat Neurosci. 2005 Jul;8(7):839-41

Long-term potentiation and long-term depression require postsynaptic depolarization, which many current models attribute to backpropagating action potentials. New experimental work suggests, however, that other mechanisms can lead to dendritic depolarization, and that backpropagating action potentials may be neither necessary nor sufficient for synaptic plasticity in vivo.

View Publication Page
Magee Lab
08/07/13 | Potassium channels control the interaction between active dendritic integration compartments in layer 5 cortical pyramidal neurons.
Harnett MT, Xu N, Magee JC, Williams SR
Neuron. 2013 Aug 7;79:516-29. doi: 10.1016/j.neuron.2013.06.005

Active dendritic synaptic integration enhances the computational power of neurons. Such nonlinear processing generates an object-localization signal in the apical dendritic tuft of layer 5B cortical pyramidal neurons during sensory-motor behavior. Here, we employ electrophysiological and optical approaches in brain slices and behaving animals to investigate how excitatory synaptic input to this distal dendritic compartment influences neuronal output. We find that active dendritic integration throughout the apical dendritic tuft is highly compartmentalized by voltage-gated potassium (KV) channels. A high density of both transient and sustained KV channels was observed in all apical dendritic compartments. These channels potently regulated the interaction between apical dendritic tuft, trunk, and axosomatic integration zones to control neuronal output in vitro as well as the engagement of dendritic nonlinear processing in vivo during sensory-motor behavior. Thus, KV channels dynamically tune the interaction between active dendritic integration compartments in layer 5B pyramidal neurons to shape behaviorally relevant neuronal computations.

View Publication Page
04/01/13 | Potential Patterning Differences Underlying Oviparous and Viviparous Development in the Pea Aphid
R Bickel , H Cleveland , J Barkas , N Belletier , DL Stern , GK Davis
Society for Integrative and Comparative Biology. 01/2013;53:E247-E247

The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the case of the reproductive polyphenism, differences in day length determine whether mothers will produce daughters that reproduce either sexually by laying fertilized eggs (oviparous sexual reproduction), or asexually by allowing oocytes to complete embryogenesis within the mother without fertilization (viviparous parthenogenesis). Oocytes and embryos that are produced asexually develop more rapidly, are yolk-free, and much smaller than oocytes and embryos that are produced sexually. Perhaps most striking, the process of oocyte differentiation is truncated in the case of asexual/viviparous development, potentially precluding interactions between the oocyte and surrounding follicle cells that might take place during sexual/oviparous development. Given the important patterning roles that oocyte-follicle cell interactions play in Drosophila, these overt differences suggest that there may be underlying differences in the molecular mechanisms of pattern formation. We have found differences in the expression of homologs of torso-like and tailless, as well as activated MAP kinase, suggesting that there are important differences in the hemipteran version of the terminal patterning system between viviparous and oviparous development. Establishing such differences in the expression of patterning genes between these developmental modes is a first step toward understanding how a single genome manages to direct patterning events in such different embryological contexts.

View Publication Page
08/28/03 | Power-law for axon diameters at branch point.
Chklovskii DB, Stepanyants A
BMC Neuroscience. 2003 Aug 28;4:18. doi: 10.1016/j.tins.2005.05.006

Axon calibers vary widely among different animals, neuron classes, and even within the same neuron. What determines the diameter of axon branches?

View Publication Page
12/01/22 | Practical considerations for quantitative light sheet fluorescence microscopy.
Hobson CM, Guo M, Vishwasrao HD, Wu Y, Shroff H, Chew T
Nature Methods. 2022 Dec 01;19(12):1538-49. doi: 10.1038/s41592-022-01632-x

Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.

View Publication Page
06/01/19 | Practical considerations in particle and object tracking and analysis.
Aaron J, Wait E, DeSantis M, Chew T
Current Protocols in Cell Biology. 2019 Jun 01;83(1):e88. doi: 10.1002/cpcb.88

The rapid advancement of live-cell imaging technologies has enabled biologists to generate high-dimensional data to follow biological movement at the microscopic level. Yet, the "perceived" ease of use of modern microscopes has led to challenges whereby sub-optimal data are commonly generated that cannot support quantitative tracking and analysis as a result of various ill-advised decisions made during image acquisition. Even optimally acquired images often require further optimization through digital processing before they can be analyzed. In writing this article, we presume our target audience to be biologists with a foundational understanding of digital image acquisition and processing, who are seeking to understand the essential steps for particle/object tracking experiments. It is with this targeted readership in mind that we review the basic principles of image-processing techniques as well as analysis strategies commonly used for tracking experiments. We conclude this technical survey with a discussion of how movement behavior can be mathematically modeled and described. © 2019 by John Wiley & Sons, Inc.

View Publication Page
03/15/16 | Practice makes perfect in memory recall.
Romani S, Katkov M, Tsodyks M
Learning & Memory (Cold Spring Harbor, N.Y.). 2016 Apr;23(4):169-73. doi: 10.1101/lm.041178.115

A large variability in performance is observed when participants recall briefly presented lists of words. The sources of such variability are not known. Our analysis of a large data set of free recall revealed a small fraction of participants that reached an extremely high performance, including many trials with the recall of complete lists. Moreover, some of them developed a number of consistent input-position-dependent recall strategies, in particular recalling words consecutively ("chaining") or in groups of consecutively presented words ("chunking"). The time course of acquisition and particular choice of positional grouping were variable among participants. Our results show that acquiring positional strategies plays a crucial role in improvement of recall performance.

View Publication Page
03/01/84 | Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA.
Chang DD, Clayton DA
Cell. 1984 Mar;36:635-43. doi: 10.1101/gad.1352105

The major site of in vivo transcriptional initiation for both heavy and light strands of human mitochondrial DNA is the displacement-loop region. Transcripts synthesized in vitro by human mitochondrial RNA polymerase were mapped to the nucleotide level and have identical 5’ end map positions to those reported for in vivo primary transcripts. An ordered series of deletion clones, whose template sequences were truncated at either the 5’ or 3’ end, was used to identify the precise mitochondrial DNA sequence required for initiation of transcription. The data provide a definitive assignment of the promoter for heavy-strand transcription occurring within -16 to +7 of the transcriptional start site 16 nucleotides upstream of the 5’ end of the gene for tRNAPhe and of the promoter for light-strand transcription occurring within -28 to +16 of the transcriptional start site at the 5’ end of "7S RNA." Within each control sequence is a candidate promoter whose consensus sequence is 5’-CANACC(G)CC(A)AAAGAPyA-3’ and in both cases transcriptional initiation occurs within six to eight nucleotides of the 3’ end of this sequence. The transcriptional start site is an integral part of each promoter and each promoter can function in the absence of the other.

View Publication Page
07/17/11 | Precise olfactory responses tile the sniff cycle.
Shusterman R, Smear MC, Koulakov AA, Rinberg D
Nature Neuroscience. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877

In terrestrial vertebrates, sniffing controls odorant access to receptors, and therefore sets the timescale of olfactory stimuli. We found that odorants evoked precisely sniff-locked activity in mitral/tufted cells in the olfactory bulb of awake mouse. The trial-to-trial response jitter averaged 12 ms, a precision comparable to other sensory systems. Individual cells expressed odor-specific temporal patterns of activity and, across the population, onset times tiled the duration of the sniff cycle. Responses were more tightly time-locked to the sniff phase than to the time after inhalation onset. The spikes of single neurons carried sufficient information to discriminate odors. In addition, precise locking to sniff phase may facilitate ensemble coding by making synchrony relationships across neurons robust to variation in sniff rate. The temporal specificity of mitral/tufted cell output provides a potentially rich source of information for downstream olfactory areas.

View Publication Page
07/18/14 | Precise spatial coding is preserved along the longitudinal hippocampal axis.
Keinath AT, Wang ME, Wann EG, Yuan RK, Dudman JT, Muzzio IA
Hippocampus. 2014 Jul 18;24(12):1-16. doi: 10.1002/hipo.22333

Compared to the dorsal hippocampus, relatively few studies have characterized neuronal responses in the ventral hippocampus. In particular, it is unclear whether and how cells in the ventral region represent space and/or respond to contextual changes. We recorded from dorsal and ventral CA1 neurons in freely moving mice exposed to manipulations of visuospatial and olfactory contexts. We found that ventral cells respond to alterations of the visuospatial environment such as exposure to novel local cues, cue rotations, and contextual expansion in similar ways to dorsal cells, with the exception of cue rotations. Furthermore, we found that ventral cells responded to odors much more strongly than dorsal cells, particularly to odors of high valence. Similar to earlier studies recording from the ventral hippocampus in CA3, we also found increased scaling of place cell field size along the longitudinal hippocampal axis. Although the increase in place field size observed toward the ventral pole has previously been taken to suggest a decrease in spatial information coded by ventral place cells, we hypothesized that a change in spatial scaling could instead signal a shift in representational coding that preserves the resolution of spatial information. To explore this possibility, we examined population activity using principal component analysis (PCA) and neural location reconstruction techniques. Our results suggest that ventral populations encode a distributed representation of space, and that the resolution of spatial information at the population level is comparable to that of dorsal populations of similar size. Finally, through the use of neural network modeling, we suggest that the redundancy in spatial representation along the longitudinal hippocampal axis may allow the hippocampus to overcome the conflict between memory interference and generalization inherent in neural network memory. Our results suggest that ventral population activity is well suited for generalization across locations and contexts. © 2014 Wiley Periodicals, Inc.

View Publication Page