Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3 Publications

Showing 1-3 of 3 results
Your Criteria:
    Baker Lab

    In Drosophila, dosage compensation occurs by increasing the transcription of the single male X chromosome. Four trans-acting factors encoded by the male-specific lethal genes are required for this process. Dosage compensation is restricted to males by the splicing regulator Sex-lethal, which functions to prevent the production of the MSL-2 protein in females by an unknown mechanism. In this report, we provide evidence that Sex-lethal acts synergistically through sequences in both the 5' and 3' untranslated regions of MSL-2 to mediate repression. We also provide evidence that the repression of MSL-2 is directly regulated by Sex-lethal at the level of translation.

    View Publication Page
    05/01/97 | Human whole-genome shotgun sequencing.
    Weber JL, Myers EW
    Genome Research. 1997 May;7:401-9
    05/01/97 | The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes.
    Robinett CC, O’Connor A, Dunaway M
    Molecular and Cellular Biology. 1997 May;17(5):2866-75

    We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3’ end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer’s activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers.

    View Publication Page