Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    02/07/99 | Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons.
    Mickus T, Jung HY, Spruston N
    Biophys J. 1999 Feb;76(2):846-60

    Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.

    View Publication Page
    02/01/99 | Modeling transcriptional regulation using microinjection into Xenopus oocytes.
    Robinett CC, Dunaway M
    Methods. 1999 Feb;17(2):151-60. doi: 10.1006/meth.1998.0726

    Transcriptional regulation is a complex process that requires cooperation between specific DNA sequence elements, the DNA-binding proteins that bind to these sequences, the general transcriptional machinery, and chromatin. Oocyte microinjection offers a technique to study the integrated transcription process while still providing the opportunity to experimentally perturb this process. We describe here techniques for manipulating DNA templates and the protein complement of the oocyte to study multiple facets of transcriptional regulation. We present sample results showing that the GAL4-VP16 fusion activator is sensitive to distance in constructs containing only a minimal promoter, but can activate transcription at greater distances when proximal promoter elements are present.

    View Publication Page