Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    01/01/10 | A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons.
    Park J, Remy S, Varela J, Cooper DC, Chung S, Kang H, Lee J, Spruston N
    PLoS Biology. 2010;8(11):e1000534. doi: 10.1371/journal.pbio.1000534

    Activation of group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5) regulates neural activity in a variety of ways. In CA1 pyramidal neurons, activation of group I mGluRs eliminates the post-burst afterhyperpolarization (AHP) and produces an afterdepolarization (ADP) in its place. Here we show that upregulation of Ca(v)2.3 R-type calcium channels is responsible for a component of the ADP lasting several hundred milliseconds. This medium-duration ADP is rapidly and reversibly induced by activation of mGluR5 and requires activation of phospholipase C (PLC) and release of calcium from internal stores. Effects of mGluR activation on subthreshold membrane potential changes are negligible but are large following action potential firing. Furthermore, the medium ADP exhibits a biphasic activity dependence consisting of short-term facilitation and longer-term inhibition. These findings suggest that mGluRs may dramatically alter the firing of CA1 pyramidal neurons via a complex, activity-dependent modulation of Ca(v)2.3 R-type channels that are activated during spiking at physiologically relevant rates and patterns.

    View Publication Page
    01/01/10 | Questions about STDP as a general model of synaptic plasticity.
    Lisman J, Spruston N
    Frontiers in Synaptic Neuroscience. 2010;2:140. doi: 10.3389/fnsyn.2010.00140

    According to spike-timing-dependent plasticity (STDP), the timing of the Na(+) spike relative to the EPSP determines whether LTP or LTD will occur. Here, we review our reservations about STDP. Most investigations of this process have been done under conditions in which the spike is evoked by postsynaptic current injection. Under more realistic conditions, in which the spike is evoked by the EPSP, the results do not generally support STDP. For instance, low-frequency stimulation of a group of synapses can cause LTD, not the LTP predicted by the pre-before-post sequence in STDP; this is true regardless of whether or not the EPSP is large enough to produce a Na(+) spike. With stronger or more frequent stimulation, LTP can be induced by the same pre-before-post timing, but in this case block of Na(+) spikes does not necessarily prevent LTP induction. Thus, Na(+) spikes may facilitate LTP and/or LTD under some conditions, but they are not necessary, a finding consistent with their small size relative to the EPSP in many parts of pyramidal cell dendrites. The nature of the dendritic depolarizing events that control bidirectional plasticity is of central importance to understanding neural function. There are several candidates, including backpropagating action potentials, but also dendritic Ca(2+) spikes, the AMPA receptor-mediated EPSP, and NMDA receptor-mediated EPSPs or spikes. These often appear to be more important than the Na(+) spike in providing the depolarization necessary for plasticity. We thus feel that it is premature to accept STDP-like processes as the major determinant of LTP/LTD.

    View Publication Page