Filter
Associated Lab
- 43418 (2) Apply 43418 filter
- 43427 (1) Apply 43427 filter
- 43430 (2) Apply 43430 filter
- Ahrens Lab (7) Apply Ahrens Lab filter
- Aso Lab (2) Apply Aso Lab filter
- Baker Lab (2) Apply Baker Lab filter
- Betzig Lab (12) Apply Betzig Lab filter
- Bock Lab (1) Apply Bock Lab filter
- Branson Lab (5) Apply Branson Lab filter
- Card Lab (3) Apply Card Lab filter
- Cardona Lab (8) Apply Cardona Lab filter
- Dickson Lab (4) Apply Dickson Lab filter
- Druckmann Lab (3) Apply Druckmann Lab filter
- Dudman Lab (3) Apply Dudman Lab filter
- Eddy/Rivas Lab (1) Apply Eddy/Rivas Lab filter
- Egnor Lab (1) Apply Egnor Lab filter
- Fetter Lab (6) Apply Fetter Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Freeman Lab (4) Apply Freeman Lab filter
- Funke Lab (2) Apply Funke Lab filter
- Gonen Lab (8) Apply Gonen Lab filter
- Grigorieff Lab (6) Apply Grigorieff Lab filter
- Harris Lab (5) Apply Harris Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Ji Lab (4) Apply Ji Lab filter
- Kainmueller Lab (3) Apply Kainmueller Lab filter
- Karpova Lab (3) Apply Karpova Lab filter
- Keleman Lab (1) Apply Keleman Lab filter
- Keller Lab (6) Apply Keller Lab filter
- Lavis Lab (13) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Leonardo Lab (2) Apply Leonardo Lab filter
- Li Lab (2) Apply Li Lab filter
- Lippincott-Schwartz Lab (9) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (4) Apply Liu (Zhe) Lab filter
- Looger Lab (10) Apply Looger Lab filter
- Magee Lab (2) Apply Magee Lab filter
- Menon Lab (2) Apply Menon Lab filter
- Murphy Lab (2) Apply Murphy Lab filter
- Pachitariu Lab (2) Apply Pachitariu Lab filter
- Pastalkova Lab (1) Apply Pastalkova Lab filter
- Pavlopoulos Lab (3) Apply Pavlopoulos Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Reiser Lab (3) Apply Reiser Lab filter
- Romani Lab (2) Apply Romani Lab filter
- Rubin Lab (3) Apply Rubin Lab filter
- Saalfeld Lab (3) Apply Saalfeld Lab filter
- Schreiter Lab (2) Apply Schreiter Lab filter
- Simpson Lab (1) Apply Simpson Lab filter
- Singer Lab (5) Apply Singer Lab filter
- Spruston Lab (6) Apply Spruston Lab filter
- Stern Lab (7) Apply Stern Lab filter
- Sternson Lab (3) Apply Sternson Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (8) Apply Svoboda Lab filter
- Tervo Lab (2) Apply Tervo Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Tjian Lab (3) Apply Tjian Lab filter
- Truman Lab (11) Apply Truman Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
- Wang (Shaohe) Lab (2) Apply Wang (Shaohe) Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zlatic Lab (2) Apply Zlatic Lab filter
Associated Project Team
- Fly Functional Connectome (2) Apply Fly Functional Connectome filter
- Fly Olympiad (1) Apply Fly Olympiad filter
- FlyEM (1) Apply FlyEM filter
- GENIE (2) Apply GENIE filter
- MouseLight (2) Apply MouseLight filter
- Tool Translation Team (T3) (1) Apply Tool Translation Team (T3) filter
- Transcription Imaging (11) Apply Transcription Imaging filter
Publication Date
- December 2016 (18) Apply December 2016 filter
- November 2016 (15) Apply November 2016 filter
- October 2016 (22) Apply October 2016 filter
- September 2016 (11) Apply September 2016 filter
- August 2016 (13) Apply August 2016 filter
- July 2016 (15) Apply July 2016 filter
- June 2016 (25) Apply June 2016 filter
- May 2016 (23) Apply May 2016 filter
- April 2016 (14) Apply April 2016 filter
- March 2016 (15) Apply March 2016 filter
- February 2016 (23) Apply February 2016 filter
- January 2016 (15) Apply January 2016 filter
- Remove 2016 filter 2016
Type of Publication
209 Publications
Showing 131-140 of 209 resultsThe mammalian retina conveys the vast majority of information about visual stimuli to two brain regions: the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). The degree to which retinal ganglion cells (RGCs) send similar or distinct information to the two areas remains unclear despite the important constraints that different patterns of RGC input place on downstream visual processing. To resolve this ambiguity we injected a glycoprotein-deficient rabies virus coding for the expression of a fluorescent protein into the dLGN or SC; rabies virus labeled a smaller fraction of RGCs than lipophilic dyes like DiI but, crucially, did not label RGC axons of passage. ~80% of the RGCs infected by rabies virus injected into the dLGN were co-labeled with DiI injected into the SC, suggesting that many dLGN-projecting RGCs also project to the SC. However, functional characterization of RGCs revealed that the SC receives input from several classes of RGCs that largely avoid the dLGN - in particular, RGCs in which (1) sustained changes in light intensity elicit transient changes in firing rate and/or (2) a small range of stimulus sizes or temporal fluctuations in light intensity elicit robust activity. Taken together, our results illustrate several unexpected asymmetries in the information that the mouse retina conveys to two major downstream targets and suggest that differences in the output of dLGN and SC neurons reflect, at least in part, differences in the functional properties of RGCs that innervate the SC but not the dLGN.
Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.
Although mRNA translation is a fundamental biological process, it has never been imaged in real-time with single molecule precision in vivo. To achieve this, we developed Nascent Chain Tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify single mRNA protein synthesis dynamics. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 s. Polysomes contain ~1 ribosome every 200-900 nucleotides and are globular rather than elongated in shape. By developing multi-color probes, we show most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.
Translation is the fundamental biological process converting mRNA information into proteins. Single molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here we report Single molecule Imaging of NAscent PeptideS (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 AA/s). In primary neurons mRNAs are translated in proximal dendrites but repressed in distal dendrites and display “bursting” translation. This technology provides a tool to address the spatiotemporal translation mechanism of single mRNAs in living cells.
Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity and different extra-hippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons, yet decreases excitability of the other class. Further, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons, yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain.
Motor planning allows us to conceive, plan, and initiate skilled motor behaviors. Motor planning involves activity distributed widely across the cortex. How this activity dynamically comes together to guide movement remains an unsolved problem. We study motor planning in mice performing a tactile decision behavior. Head-fixed mice discriminate object locations with their whiskers and report their choice by directional licking (“lick left”/“lick right”). A short-term memory component separates tactile “sensation” and “action” into distinct epochs. Using loss-of-function experiments, cell-type specific electrophysiology, and cellular imaging, we delineate when and how activity in specific brain areas and cell types drives motor planning in mice. Our results suggest that information flows serially from sensory to motor areas during motor planning. The motor cortex circuit maintains the motor plan during short-term memory and translates the motor plan into motor commands that drive the upcoming directional licking.
Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output.
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
For goal-directed behaviour it is critical that we can both select the appropriate action and learn to modify the underlying movements (for example, the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behaviour, such as the neocortex and thalamus, are integrated with reward signalling to reinforce successful, purposive actions. The dorsal striatum, a major input structure of basal ganglia, is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes and suppress actions that do not, respectively. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in the striatum. Although perturbations of basal ganglia function produce profound changes in movement, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we use cell-type-specific stimulation in mice delivered in closed loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity, without affecting action selection or motivation. These behavioural changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia.
We consider the problem of estimating discrete selfexciting point process models from limited binary observations, where the history of the process serves as the covariate. We analyze the performance of two classes of estimators, namely the `1-regularized maximum likelihood and greedy estimators, for a canonical self-exciting point process and characterize the sampling tradeoffs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear and generalized linear models with i.i.d. covariates to point processes with highly inter-dependent covariates. We further provide simulation studies as well as application to real spiking data from mouse’s lateral geniculate nucleus and ferret’s retinal ganglion cells which agree with our theoretical predictions.