Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

209 Publications

Showing 41-50 of 209 results
Your Criteria:
    05/04/16 | Sampling Requirements for Stable Autoregressive Estimation
    Abbas Kazemipour , Sina Miran , Piya Pal , Behtash Babadi , Min Wu

    We consider the problem of estimating the parameters of a linear autoregressive model with sub-Gaussian innovations from a limited sequence of consecutive observations. Assuming that the parameters are compressible, we analyze the performance of the ℓ1-regularized least squares as well as a greedy estimator of the parameters and characterize the sampling trade-offs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear models where the covariates are i.i.d. and independent of the observation history to autoregressive processes with highly inter-dependent covariates. We also derive sufficient conditions on the sparsity level that guarantee the minimax optimality of the ℓ1-regularized least squares estimate. Applying these techniques to simulated data as well as real-world datasets from crude oil prices and traffic speed data confirm our predicted theoretical performance gains in terms of estimation accuracy and model selection.

    View Publication Page
    10/25/16 | V-1 regulates capping protein activity in vivo.
    Jung G, Alexander CJ, Wu XS, Piszczek G, Chen B, Betzig E, Hammer JA
    Proceedings of the National Academy of Sciences of the United States of America. 2016 Oct 25;113(43):E6610-9. doi: 10.1073/pnas.1605350113

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

    View Publication Page
    10/24/16 | Bright photoactivatable fluorophores for single-molecule imaging.
    Lavis LD, Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, Lionnet T
    Nature Methods. 2016 Oct 24;13(12):985-8. doi: 10.1038/nmeth.4034

    Small molecule fluorophores are important tools for advanced imaging experiments. The development of self-labeling protein tags such as the HaloTag and SNAP-tag has expanded the utility of chemical dyes in live-cell microscopy. We recently described a general method for improving the brightness and photostability of small, cell-permeable fluorophores, resulting in the novel azetidine-containing "Janelia Fluor" (JF) dyes. Here, we refine and extend the utility of the JF dyes by synthesizing photoactivatable derivatives that are compatible with live cell labeling strategies. These compounds retain the superior brightness of the JF dyes once activated, but their facile photoactivation also enables improved single-particle tracking and localization microscopy experiments.

    View Publication Page
    10/24/16 | Central brain circuitry for color-vision-modulated behaviors.
    Longden KD
    Current Biology : CB. 2016 Oct 24;26(20):R981-8. doi: 10.1016/j.cub.2016.07.071

    Color is famous for not existing in the external world: our brains create the perception of color from the spatial and temporal patterns of the wavelength and intensity of light. For an intangible quality, we have detailed knowledge of its origins and consequences. Much is known about the organization and evolution of the first phases of color processing, the filtering of light in the eye and processing in the retina, and about the final phases, the roles of color in behavior and natural selection. To understand how color processing in the central brain has evolved, we need well-defined pathways or circuitry where we can gauge how color contributes to the computations involved in specific behaviors. Examples of such pathways or circuitry that are dedicated to processing color cues are rare, despite the separation of color and luminance pathways early in the visual system of many species, and despite the traditional definition of color as being independent of luminance. This minireview presents examples in which color vision contributes to behaviors dominated by other visual modalities, examples that are not part of the canon of color vision circuitry. The pathways and circuitry process a range of chromatic properties of objects and their illumination, and are taken from a variety of species. By considering how color processing complements luminance processing, rather than being independent of it, we gain an additional way to account for the diversity of color coding in the central brain, its consequences for specific behaviors and ultimately the evolution of color vision.

    View Publication Page
    10/24/16 | RNA-binding profiles of Drosophila CPEB proteins Orb and Orb2.
    Stepien BK, Oppitz C, Gerlach D, Dag U, Novatchkova M, Krüttner S, Stark A, Keleman K
    Proceedings of the National Academy of Sciences of the United States of America. 2016 Oct 24:. doi: 10.1073/pnas.1603715113

    Localized protein translation is critical in many biological contexts, particularly in highly polarized cells, such as neurons, to regulate gene expression in a spatiotemporal manner. The cytoplasmic polyadenylation element-binding (CPEB) family of RNA-binding proteins has emerged as a key regulator of mRNA transport and local translation required for early embryonic development, synaptic plasticity, and long-term memory (LTM). Drosophila Orb and Orb2 are single members of the CPEB1 and CPEB2 subfamilies of the CPEB proteins, respectively. At present, the identity of the mRNA targets they regulate is not fully known, and the binding specificity of the CPEB2 subfamily is a matter of debate. Using transcriptome-wide UV cross-linking and immunoprecipitation, we define the mRNA-binding sites and targets of Drosophila CPEBs. Both Orb and Orb2 bind linear cytoplasmic polyadenylation element-like sequences in the 3' UTRs of largely overlapping target mRNAs, with Orb2 potentially having a broader specificity. Both proteins use their RNA-recognition motifs but not the Zinc-finger region for RNA binding. A subset of Orb2 targets is translationally regulated in cultured S2 cells and fly head extracts. Moreover, pan-neuronal RNAi knockdown of these targets suggests that a number of these targets are involved in LTM. Our results provide a comprehensive list of mRNA targets of the two CPEB proteins in Drosophila, thus providing insights into local protein synthesis involved in various biological processes, including LTM.

    View Publication Page
    Baker Lab
    10/20/16 | Memory elicited by courtship conditioning requires mushroom body neuronal subsets similar to those utilized in appetitive memory.
    Montague SA, Baker BS
    PLoS One. 2016 Oct 20;11(10):e0164516. doi: 10.1371/journal.pone.0164516

    An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.

    View Publication Page
    10/19/16 | A designer AAV variant permits efficient retrograde access to projection neurons.
    Tervo DG, Hwang B, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang C, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY
    Neuron. 2016 Oct 19;92(2):372-82. doi: 10.1016/j.neuron.2016.09.021

    Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.

    View Publication Page
    Svoboda Lab
    10/17/16 | Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation.
    Yu J, Gutnisky DA, Hires SA, Svoboda K
    Nature Neuroscience. 2016 Oct 17;19(12):1647-57. doi: 10.1038/nn.4412

    We rely on movement to explore the environment, for example, by palpating an object. In somatosensory cortex, activity related to movement of digits or whiskers is suppressed, which could facilitate detection of touch. Movement-related suppression is generally assumed to involve corollary discharges. Here we uncovered a thalamocortical mechanism in which cortical fast-spiking interneurons, driven by sensory input, suppress movement-related activity in layer 4 (L4) excitatory neurons. In mice locating objects with their whiskers, neurons in the ventral posteromedial nucleus (VPM) fired in response to touch and whisker movement. Cortical L4 fast-spiking interneurons inherited these responses from VPM. In contrast, L4 excitatory neurons responded mainly to touch. Optogenetic experiments revealed that fast-spiking interneurons reduced movement-related spiking in excitatory neurons, enhancing selectivity for touch-related information during active tactile sensation. These observations suggest a fundamental computation performed by the thalamocortical circuit to accentuate salient tactile information.

    View Publication Page
    10/10/16 | Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin.
    Zhen CY, Tatavosian R, Huynh TN, Duc HN, Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, Li Y, Yao T, Ren X
    eLife. 2016 Oct 10;5:. doi: 10.7554/eLife.17667

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes.

    View Publication Page
    10/07/16 | Light sheet microscopes: Novel imaging toolbox for visualizing life's processes.
    Heddleston JM, Chew T
    The International Journal of Biochemistry & Cell Biology. 2016 Oct 7:. doi: 10.1016/j.biocel.2016.10.002

    Capturing dynamic processes in live samples is a nontrivial task in biological imaging. Although fluorescence provides high specificity and contrast compared to other light microscopy techniques, the photophysical principles of this method can have a harmful effect on the sample. Current advances in light sheet microscopy have created a novel imaging toolbox that allows for rapid acquisition of high-resolution fluorescent images with minimal perturbation of the processes of interest. Each unique design has its own advantages and limitations. In this review, we describe several cutting edge light sheet microscopes and their optimal applications.

    View Publication Page