Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

191 Publications

Showing 151-160 of 191 results
Your Criteria:
    03/02/20 | Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
    Wu J, Liang Y, Chen S, Hsu C, Chavarha M, Evans SW, Shi D, Lin MZ, Tsia KK, Ji N
    Nature Methods. 2020 Mar 02;17(3):287-290. doi: 10.1038/s41592-020-0762-7

    Understanding information processing in the brain requires monitoring neuronal activity at high spatiotemporal resolution. Using an ultrafast two-photon fluorescence microscope empowered by all-optical laser scanning, we imaged neuronal activity in vivo at up to 3,000 frames per second and submicrometer spatial resolution. This imaging method enabled monitoring of both supra- and subthreshold electrical activity down to 345 μm below the brain surface in head-fixed awake mice.

    View Publication Page
    03/02/20 | Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
    Lu R, Liang Y, Meng G, Zhou P, Svoboda K, Paninski L, Ji N
    Nature Methods. 2020 Mar 02;17(3):291-4. doi: 10.1038/s41592-020-0760-9

    Imaging neurons and neural circuits over large volumes at high speed and subcellular resolution is a difficult task. Incorporating a Bessel focus module into a two-photon fluorescence mesoscope, we achieved rapid volumetric imaging of neural activity over the mesoscale with synaptic resolution. We applied the technology to calcium imaging of entire dendritic spans of neurons as well as neural ensembles within multiple cortical regions over two hemispheres of the awake mouse brain.

    View Publication Page
    03/01/20 | Characterization of the Genetic Architecture Underlying Eye Size Variation Within Drosophila melanogaster and Drosophila simulans.
    Gaspar P, Arif S, Sumner-Rooney L, Kittelmann M, Bodey AJ, Stern DL, Nunes MD, McGregor AP
    Genes|Genomes|Genetics. 2020 Mar 01;10(3):1005-18. doi: 10.1534/g3.119.400877
    03/01/20 | Toward nanoscale localization of memory engrams in Drosophila.
    Aso Y, Rubin GM
    Journal of Neurogenetics. 2020 Mar 01;34(1):151-55. doi: 10.1080/01677063.2020.1715973

    The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.

    View Publication Page
    03/02/20 | Neural circuitry linking mating and egg laying in Drosophila females.
    Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Bock D, Dickson BJ
    Nature. 2020 Mar 02;579(7797):101-105. doi: 10.1038/s41586-020-2055-9

    Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying. Sex peptide is detected by sensory neurons in the uterus, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.

    View Publication Page
    02/26/20 | Nicotine exposure and neuronal activity regulate Golgi membrane dispersal and distribution
    Govind AP, Jeyifous O, Russell TA, Vaasjo LO, Yi Z, Weigel AV, Newell L, Koranda JL, Singh K, Valbuena F, Glick BS, Mukherjee J, Lippincott-Schwartz J, Zhuang X, Green WN
    bioRxiv. 2020 Feb 26:

    How nicotine exposure produces long-lasting changes that remodel neural circuits with addiction is unknown. Here, we report that long-term nicotine exposure alters the trafficking of α4β2-type nicotinic acetylcholine receptors (α4β2Rs) by dispersing and redistributing the Golgi apparatus. In cultured neurons, dispersed Golgi membranes were distributed throughout somata, dendrites and axons. Small, mobile vesicles in dendrites and axons lacked standard Golgi markers and were identified by other Golgi enzymes that modify glycans. Nicotine exposure increased levels of dispersed Golgi membranes, which required α4β2R expression. Similar nicotine-induced changes occurred in vivo at dopaminergic neurons at mouse nucleus accumbens terminals, consistent with these events contributing to nicotine’s addictive effects. Characterization in vitro demonstrated that dispersal was reversible, that dispersed Golgi membranes were functional, and that membranes were heterogenous in size, with smaller vesicles emerging from larger “ministacks”, similar to Golgi dispersal induced by nocadazole. Protocols that increased cultured neuronal synaptic excitability also increased Golgi dispersal, without the requirement of α4β2R expression. Our findings reveal novel activity- and nicotine-dependent changes in neuronal intracellular morphology. These changes regulate levels and location of dispersed Golgi membranes at dendrites and axons, which function in local trafficking at subdomains.

    View Publication Page
    02/25/20 | High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging
    McRaven C, Tanese D, Zhang L, Yang C, Ahrens MB, Emiliani V, Koyama M
    bioRxiv. 2020 Feb 25:. doi: https://doi.org/10.1101/2020.02.21.959650

    The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.

    View Publication Page
    02/24/20 | Multiple network properties overcome random connectivity to enable stereotypic sensory responses.
    Mittal AM, Gupta D, Singh A, Lin AC, Gupta N
    Nature Communications. 2020 Feb 24;11(1):1023. doi: 10.1038/s41467-020-14836-6

    Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity.

    View Publication Page
    02/18/20 | Transcriptional co-repressor Sin3a regulates hippocampal synaptic plasticity via Homer1/mGluR5.
    Bridi MS, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Banks GS, Lejards C, Hahn C, Giese KP, Havekes R, Spruston N, Abel T
    JCI Insight. 2020 Feb 18:. doi: 10.1172/jci.insight.92385

    Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of two classes of regulatory complexes: permissive co-activators and silencing co-repressors. Much work has focused on co-activator complexes, but little is known about the co-repressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the co-repressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the post-synaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the mGluR1α- and mGluR5-dependence of long-term potentiation, and increases activation of extracellular signal regulated kinase (ERK) in the hippocampus after learning. Our studies define a critical role for co-repressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.

    View Publication Page
    02/17/20 | Behavioral features of motivated response to alcohol in Drosophila.
    Catalano JL, Mei N, Azanchi R, Song S, Blackwater T, Heberlein U, Kaun KR
    bioRxiv. 2020 Feb 17:

    Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We propose this combination of 9 be

    View Publication Page