Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

196 Publications

Showing 171-180 of 196 results
Your Criteria:
    02/03/20 | Cellpose: a generalist algorithm for cellular segmentation
    Stringer C, Michaelos M, Pachitariu M
    bioRxiv. 2020 Feb 03:. doi: 10.1101/2020.02.02.931238

    Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation algorithm called Cellpose, which can very precisely segment a wide range of image types out-of-the-box and does not require model retraining or parameter adjustments. We trained Cellpose on a new dataset of highly-varied images of cells, containing over 70,000 segmented objects. To support community contributions to the training data, we developed software for manual labelling and for curation of the automated results, with optional direct upload to our data repository. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.

    View Publication Page
    02/01/20 | In situ structure determination at nanometer resolution using TYGRESS.
    Song K, Shang Z, Fu X, Lou X, Grigorieff N, Nicastro D
    Nature Methods. 2020 Feb 01;17(2):201-08. doi: 10.1038/s41592-019-0651-0

    The resolution of subtomogram averages calculated from cryo-electron tomograms (cryo-ET) of crowded cellular environments is often limited owing to signal loss in, and misalignment of, the subtomograms. By contrast, single-particle cryo-electron microscopy (SP-cryo-EM) routinely reaches near-atomic resolution of isolated complexes. We report a method called 'tomography-guided 3D reconstruction of subcellular structures' (TYGRESS) that is a hybrid of cryo-ET and SP-cryo-EM, and is able to achieve close-to-nanometer resolution of complexes inside crowded cellular environments. TYGRESS combines the advantages of SP-cryo-EM (images with good signal-to-noise ratio and contrast, as well as minimal radiation damage) and subtomogram averaging (three-dimensional alignment of macromolecules in a complex sample). Using TYGRESS, we determined the structure of the intact ciliary axoneme with up to resolution of 12 Å. These results reveal many structural details that were not visible by cryo-ET alone. TYGRESS is generally applicable to cellular complexes that are amenable to subtomogram averaging.

    View Publication Page
    01/01/20 | Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans.
    Bai X, Melesse M, Sorensen Turpin CG, Sloan D, Chen C, Wang W, Lee P, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen B, Cheerambathur D, Bembenek JN
    Development. 2020 Jan;147(1):1-16. doi: 10.1242/dev.181099

    While cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant embryonic divisions and found several reproducibly altered parameters at different stages. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, cytokinesis is implemented in a specialized way during epithelial polarization and Aurora B has a new role in the formation of the apical surface.

    View Publication Page
    01/27/20 | Structure and assembly of calcium homeostasis modulator proteins.
    Syrjanen JL, Michalski K, Chou T, Grant T, Rao S, Simorowski N, Tucker SJ, Grigorieff N, Furukawa H
    Nature Structural and Molecular Biology. 2020 Jan 27;27(2):150-9. doi: 10.1038/s41594-019-0369-9

    The biological membranes of many cell types contain large-pore channels through which a wide variety of ions and metabolites permeate. Examples include connexin, innexin and pannexin, which form gap junctions and/or bona fide cell surface channels. The most recently identified large-pore channels are the calcium homeostasis modulators (CALHMs), through which ions and ATP permeate in a voltage-dependent manner to control neuronal excitability, taste signaling and pathologies of depression and Alzheimer's disease. Despite such critical biological roles, the structures and patterns of their oligomeric assembly remain unclear. Here, we reveal the structures of two CALHMs, chicken CALHM1 and human CALHM2, by single-particle cryo-electron microscopy (cryo-EM), which show novel assembly of the four transmembrane helices into channels of octamers and undecamers, respectively. Furthermore, molecular dynamics simulations suggest that lipids can favorably assemble into a bilayer within the larger CALHM2 pore, but not within CALHM1, demonstrating the potential correlation between pore size, lipid accommodation and channel activity.

    View Publication Page
    01/27/20 | Imaging Cellular Proteins and Structures
    Arias IM, Alter HJ, Boyer JL, Cohen DE, Shafritz DA, Thorgeirsson SS, Wolkoff AW, Weigel AV, Snapp EL
    The Liver : Biology and Pathobiology:965 - 978. doi: 10.1002/978111943681210.1002/9781119436812.ch72

    This chapter describes many of the technologies, which have the potential to provide new insights into fundamental aspects of liver biology. Imaging live liver tissue in an animal with multiphoton microscopy coupled with photoactivatable fluorescent proteins and/or additional fluorescent proteins could be used to follow the lineage and fates of individual transplanted stem cells or developing transgenic cells in liver. Proteins or other molecules are labeled with a dye that can be excited with light source. Cells and proteins are generally too small to detect with the naked eye, relatively transparent when imaged by light microscopy, and are highly dynamic. With the increased signal to noise, isotropic and volumetric imaging and high speeds lattice light sheet allows for 3D super‐resolution microscopy, as well. Photomultiplier tubes, while capable of detecting and counting single photons, are less useful for high‐speed imaging because they normally only detect a single pixel at a time.

    View Publication Page
    01/23/20 | Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators.
    Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L
    Cell. 01/2020;180(2):373-386.e15. doi: 10.1016/j.cell.2019.12.029

    Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.

    View Publication Page
    01/22/20 | Accurate measurement of fast endocytic recycling kinetics in real time.
    Jonker CT, Deo C, Zager PJ, Tkachuk AN, Weinstein AM, Rodriguez-Boulan E, Lavis LD, Schreiner R
    Journal of Cell Science. 2020 Jan 22;133(2):. doi: 10.1242/jcs.231225

    The fast turnover of membrane components through endocytosis and recycling allows precise control of the composition of the plasma membrane. Endocytic recycling can be rapid with some molecules returning to the plasma membrane with a <5 minutes. Existing methods to study these trafficking pathways utilize chemical, radioactive, or fluorescent labeling of cell surface receptors in pulse-chase experiments, which require tedious washing steps and manual collection of samples. Here, we introduce a live-cell endocytic recycling assay, based on a newly designed cell-impermeable, fluorogenic ligand for HaloTag: 'Janelia Fluor 635i' (JFi; i=impermeant) which allows real-time detection of membrane receptor recycling at steady state. We used this method to study the effect of iron depletion on transferrin receptor (TfR) recycling using the chelator desferrioxamine. We found this perturbation significantly increases the TfR recycling rate. The high temporal resolution and simplicity of this assay provides a clear advantage over extant methods and makes it ideal for large scale cellular imaging studies. This assay can be adapted to examine other cellular kinetic parameters such as protein turnover and biosynthetic trafficking.

    View Publication Page
    01/17/20 | Accelerated EM Connectome Reconstruction using 3D Visualization and Segmentation Graphs
    Philip M. Hubbard , Stuart Berg , Ting Zhao , Donald J. Olbris , Lowell Umayam , Jeremy Maitin-Shepard , Michal Januszewski , William T. Katz , Erika R. Neace , Stephen M. Plaza
    bioRxiv. 2020 Jan 17:. doi: 10.1101/2020.01.17.909572

    Recent advances in automatic image segmentation and synapse prediction in electron microscopy (EM) datasets of the brain enable more efficient reconstruction of neural connectivity. In these datasets, a single neuron can span thousands of images containing complex tree-like arbors with thousands of synapses. While image segmentation algorithms excel within narrow fields of views, the algorithms sometimes struggle to correctly segment large neurons, which require large context given their size and complexity. Conversely, humans are comparatively good at reasoning with large objects. In this paper, we introduce several semi-automated strategies that combine 3D visualization and machine guidance to accelerate connectome reconstruction. In particular, we introduce a strategy to quickly correct a segmentation through merging and cleaving, or splitting a segment along supervoxel boundaries, with both operations driven by affinity scores in the underlying segmentation. We deploy these algorithms as streamlined workflows in a tool called Neu3 and demonstrate superior performance compared to prior work, thus enabling efficient reconstruction of much larger datasets. The insights into proofreading from our work clarify the trade-offs to consider when tuning the parameters of image segmentation algorithms.

    View Publication Page
    01/17/20 | Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells.
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang C, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF
    Science. 2020 Jan 17;367(6475):. doi: 10.1126/science.aaz5357

    Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.

    View Publication Page
    01/16/20 | Cortical pattern generation during dexterous movement is input-driven.
    Sauerbrei BA, Guo J, Cohen JD, Mischiati M, Guo W, Kabra M, Verma N, Mensh B, Branson K, Hantman AW
    Nature. 2020 Jan 16;577(7790):386-91. doi: 10.1038/s41586-019-1869-9

    The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres. Local cortical dynamics are thought to shape these patterns throughout movement execution. External inputs have been implicated in setting the initial state of the motor cortex, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.

    View Publication Page