Filter
Associated Lab
- Aguilera Castrejon Lab (15) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (11) Apply Ahrens Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (12) Apply Betzig Lab filter
- Beyene Lab (5) Apply Beyene Lab filter
- Bock Lab (3) Apply Bock Lab filter
- Branson Lab (3) Apply Branson Lab filter
- Card Lab (6) Apply Card Lab filter
- Cardona Lab (19) Apply Cardona Lab filter
- Chklovskii Lab (3) Apply Chklovskii Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Darshan Lab (4) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (14) Apply Dickson Lab filter
- Druckmann Lab (4) Apply Druckmann Lab filter
- Dudman Lab (12) Apply Dudman Lab filter
- Egnor Lab (7) Apply Egnor Lab filter
- Espinosa Medina Lab (4) Apply Espinosa Medina Lab filter
- Fetter Lab (10) Apply Fetter Lab filter
- Fitzgerald Lab (13) Apply Fitzgerald Lab filter
- Gonen Lab (32) Apply Gonen Lab filter
- Grigorieff Lab (28) Apply Grigorieff Lab filter
- Harris Lab (10) Apply Harris Lab filter
- Heberlein Lab (81) Apply Heberlein Lab filter
- Hermundstad Lab (4) Apply Hermundstad Lab filter
- Hess Lab (3) Apply Hess Lab filter
- Jayaraman Lab (4) Apply Jayaraman Lab filter
- Johnson Lab (5) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keleman Lab (5) Apply Keleman Lab filter
- Keller Lab (15) Apply Keller Lab filter
- Koay Lab (16) Apply Koay Lab filter
- Lavis Lab (12) Apply Lavis Lab filter
- Lee (Albert) Lab (5) Apply Lee (Albert) Lab filter
- Leonardo Lab (4) Apply Leonardo Lab filter
- Li Lab (24) Apply Li Lab filter
- Lippincott-Schwartz Lab (72) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (5) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (5) Apply Liu (Zhe) Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Magee Lab (18) Apply Magee Lab filter
- Menon Lab (6) Apply Menon Lab filter
- Murphy Lab (7) Apply Murphy Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Otopalik Lab (12) Apply Otopalik Lab filter
- Pachitariu Lab (12) Apply Pachitariu Lab filter
- Pastalkova Lab (13) Apply Pastalkova Lab filter
- Pavlopoulos Lab (12) Apply Pavlopoulos Lab filter
- Pedram Lab (11) Apply Pedram Lab filter
- Reiser Lab (6) Apply Reiser Lab filter
- Riddiford Lab (24) Apply Riddiford Lab filter
- Romani Lab (12) Apply Romani Lab filter
- Rubin Lab (38) Apply Rubin Lab filter
- Saalfeld Lab (17) Apply Saalfeld Lab filter
- Satou Lab (15) Apply Satou Lab filter
- Schreiter Lab (17) Apply Schreiter Lab filter
- Sgro Lab (20) Apply Sgro Lab filter
- Simpson Lab (5) Apply Simpson Lab filter
- Singer Lab (43) Apply Singer Lab filter
- Spruston Lab (36) Apply Spruston Lab filter
- Stern Lab (83) Apply Stern Lab filter
- Sternson Lab (7) Apply Sternson Lab filter
- Stringer Lab (3) Apply Stringer Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Tebo Lab (24) Apply Tebo Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Tjian Lab (47) Apply Tjian Lab filter
- Truman Lab (30) Apply Truman Lab filter
- Turaga Lab (12) Apply Turaga Lab filter
- Turner Lab (11) Apply Turner Lab filter
- Wang (Shaohe) Lab (19) Apply Wang (Shaohe) Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zlatic Lab (2) Apply Zlatic Lab filter
- Zuker Lab (20) Apply Zuker Lab filter
Associated Project Team
Publication Date
- 2024 (1) Apply 2024 filter
- 2023 (1) Apply 2023 filter
- 2022 (26) Apply 2022 filter
- 2021 (19) Apply 2021 filter
- 2020 (19) Apply 2020 filter
- 2019 (25) Apply 2019 filter
- 2018 (26) Apply 2018 filter
- 2017 (31) Apply 2017 filter
- 2016 (18) Apply 2016 filter
- 2015 (57) Apply 2015 filter
- 2014 (46) Apply 2014 filter
- 2013 (58) Apply 2013 filter
- 2012 (78) Apply 2012 filter
- 2011 (92) Apply 2011 filter
- 2010 (100) Apply 2010 filter
- 2009 (102) Apply 2009 filter
- 2008 (100) Apply 2008 filter
- 2007 (85) Apply 2007 filter
- 2006 (89) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
- Remove Non-Janelia filter Non-Janelia
1417 Publications
Showing 1381-1390 of 1417 resultsThe doublesex (dsx) gene regulates somatic sexual differentiation in both sexes in D. melanogaster. Two functional products are encoded by dsx: one product is expressed in females and represses male differentiation, and the other is expressed in males and represses female differentiation. We have determined that the dsx gene is transcribed to produce a common primary transcript that is alternatively spliced and polyadenylated to yield male- and female-specific mRNAs. These sex-specific mRNAs share a common 5' end and three common exons, but possess alternative sex-specific 3' exons, thus encoding polypeptides with a common amino-terminal sequence but sex-specific carboxyl termini. Genetic and molecular data suggest that sequences including and adjacent to the female-specific splice acceptor site play an important role in the regulation of dsx expression by the transformer and transformer-2 loci.
The D. melanogaster transformer-2 (tra-2) gene regulates somatic sexual differentiation in females and is necessary for spermatogenesis in males. Wild-type tra-2 function is required for the female-specific splicing of the pre-mRNA of the next known gene (doublesex) downstream of tra-2 in the sex determination regulatory hierarchy. The tra-2 gene was cloned, and P element-mediated transformation was used to demonstrate that a 3.9 kb genomic fragment contains all sequences necessary for tra-2 function. A 1.7 kb transcript was shown to be the product of the tra-2 locus based on its reduced level in flies containing a tra-2 mutant allele. The sequence of a cDNA corresponding to this transcript indicates that it encodes a polypeptide with strong similarity to a family of RNA binding proteins that includes proteins found associated with hnRNPs and snRNPs, suggesting that the tra-2 product may directly regulate the processing of the double-sex pre-mRNA in females.
Using complementary oligonucleotide probes, we have isolated the nuclear gene for the RNA moiety of RNAase MRP; it is present as a single copy and encodes an uncapped primary transcript of 275 nucleotides. Direct sequence analysis revealed that the 136 nucleotide RNA that copurifies with RNAase MRP represents the 3’ half of the 275 nucleotide primary transcript. The 5’-flanking region of the gene has putative transcriptional control elements homologous to the promoters of RNA polymerase II-transcribed U-series snRNA genes; however, the coding region possesses a box A sequence and terminates at four T residues, both features characteristic of polymerase III-transcribed genes. A decamer sequence, 5’-CGA-CCCCUCC-3’, complementary to a conserved sequence adjacent to the enzymatic cleavage site on the mitochondrial RNA substrate, is present in the RNAase MRP RNA. Isolation of a nuclear gene for the RNA component of a mitochondrial enzyme implies that nucleic acids can be transported across mitochondrial membranes.
A gas of hydrogen atoms, confined in a static magnetic trap, has been evaporatively cooled to temperatures of a few millikelvin. The initial trap configuration held the gas at 38 mK for as long as 5 h. Evaporative cooling reduced the temperature to 3.0 mK while maintaining the central density at 7.6×10 12 cm −3 . These values were determined by measurement of the rate of electronic spin relaxation and are in agreement with model calculations. Further cooling to 1 mK (inferred from the model) has been achieved. Measurements were made of the efficiency of the evaporative cooling process.
The Drosophila gene sevenless encodes a putative trans-membrane receptor required for the formation of one particular cell, the R7 photoreceptor, in each ommatidium of the compound eye. Mutations in this gene result in the cell normally destined to form the R7 cell forming a non-neuronal cell type instead. These observations have led to the proposal that the sevenless protein receives at least part of the positional information required for the R7 developmental pathway. We have generated antibodies specific for sevenless and have examined expression of the protein by light and electron microscopy. sevenless protein is present transiently at high levels in at least 9 cells in each developing ommatidium and is detectable several hours before any overt differentiation of R7. The protein is mostly localized at the apices of the cells, in microvilli, but is also found deeper in the tissue where certain cells contact the R8 cell. This finding suggests that R8 expresses a ligand for the sevenless protein.
Analysis of the nucleotide sequence of the genetic locus for yeast mitochondrial RNA polymerase (RPO41) reveals a continuous open reading frame with the coding potential for a polypeptide of 1351 amino acids, a size consistent with the electrophoretic mobility of this enzymatic activity. The transcription product from this gene spans the singular reading frame. In vivo transcript abundance reflects codon usage and growth under stringent conditions for mitochondrial biogenesis and function results in a several fold higher level of gene expression than growth under glucose repression. A comparison of the yeast mitochondrial RNA polymerase amino acid sequence to those of E. coli RNA polymerase subunits failed to demonstrate any regions of homology. Interestingly, the mitochondrial enzyme is highly homologous to the DNA-directed RNA polymerases of bacteriophages T3 and T7, especially in regions most highly conserved between the T3 and T7 enzymes themselves.
Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.
The determination of cell fates during the assembly of the ommatidia in the compound eye of Drosophila appears to be controlled by cell-cell interactions. In this process, the sevenless gene is essential for the development of a single type of photoreceptor cell. In the absence of proper sevenless function the cells that would normally become the R7 photoreceptors instead become nonneuronal cells. Previous morphological and genetic analysis has indicated that the product of the sevenless gene is involved in reading or interpreting the positional information that specifies this particular developmental pathway. The sevenless gene has now been isolated and characterized. The data indicate that sevenless encodes a transmembrane protein with a tyrosine kinase domain. This structural similarity between sevenless and certain hormone receptors suggests that similar mechanisms are involved in developmental decisions based on cell-cell interaction and physiological or developmental changes induced by diffusible factors.
Ribonuclease mitochondrial RNA processing, a site-specific endoribonuclease involved in primer RNA metabolism in mammalian mitochondria, requires an RNA component for its activity. On the basis of copurification and selective inactivation with complementary oligonucleotides, a 135-nucleotide RNA species, not encoded in the mitochondrial genome, is identified as the RNA moiety of the endoribonuclease. This finding implies transport of a nucleus-encoded RNA, essential for organelle DNA replication, to the mitochondrial matrix.
The transformer (tra) gene regulates all aspects of somatic sexual differentiation in Drosophila melanogaster females and has no function in males. We have isolated the tra gene as part of a 200 kb chromosomal walk. The 25 kb region around tra contains four genetically identified complementation groups and at least six transcriptional units. Germ-line transformation experiments indicate that a fragment of 2 kb is sufficient to supply tra+ function. Mapping of cDNAs from tra and from the adjacent genes indicates that the tra+ transcription unit is 1.2 kb or less. This transcription unit gives rise to a 1.0 kb RNA that is female-specific and a 1.2 kb RNA that is present in both sexes. tra+ and the gene at the 3' side overlap slightly in the 3' ends of their RNA coding sequences. These results suggest that tra+ function is regulated at the level of production of the female-specific tra RNA. The fact that a tra transcript is found in males raises interesting possibilities for how tra expression is controlled.