Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Albert Lab / Publications
general_search_page-panel_pane_1 | views_panes

24 Publications

Showing 21-24 of 24 results
Your Criteria:
    06/20/14 | Whole-cell patch-clamp recordings in freely moving animals.
    Lee AK, Epsztein J, Brecht M
    Methods in Molecular Biology. 2014 Jun 20;1183:263-76. doi: 10.1007/978-1-4939-1096-0_17

    The patch-clamp technique and the whole-cell measurements derived from it have greatly advanced our understanding of the coding properties of individual neurons by allowing for a detailed analysis of their excitatory/inhibitory synaptic inputs, intrinsic electrical properties, and morphology. Because such measurements require a high level of mechanical stability they have for a long time been limited to in vitro and anesthetized preparations. Recently, however, a considerable amount of effort has been devoted to extending these techniques to awake restrained/head-fixed preparations allowing for the study of the input-output functions of neurons during behavior. In this chapter we describe a technique extending patch-clamp recordings to awake animals free to explore their environments.

    View Publication Page
    08/17/12 | Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior.
    Lee D, Lin B, Lee AK
    Science. 2012 Aug 17;337:849-53. doi: 10.1126/science.1221489

    The origin of the spatial receptive fields of hippocampal place cells has not been established. A hippocampal CA1 pyramidal cell receives thousands of synaptic inputs, mostly from other spatially tuned neurons; however, how the postsynaptic neuron’s cellular properties determine the response to these inputs during behavior is unknown. We discovered that, contrary to expectations from basic models of place cells and neuronal integration, a small, spatially uniform depolarization of the spatially untuned somatic membrane potential of a silent cell leads to the sudden and reversible emergence of a spatially tuned subthreshold response and place-field spiking. Such gating of inputs by postsynaptic neuronal excitability reveals a cellular mechanism for receptive field origin and may be critical for the formation of hippocampal memory representations.

    View Publication Page
    02/01/12 | Intracellular recording in behaving animals.
    Long MA, Lee AK
    Current Opinion in Neurobiology. 2012 Feb;22(1):34-44. doi: 10.1016/j.conb.2011.10.013

    Electrophysiological recordings from behaving animals provide an unparalleled view into the functional role of individual neurons. Intracellular approaches can be especially revealing as they provide information about a neuron's inputs and intrinsic cellular properties, which together determine its spiking output. Recent technical developments have made intracellular recording possible during an ever-increasing range of behaviors in both head-fixed and freely moving animals. These recordings have yielded fundamental insights into the cellular and circuit mechanisms underlying neural activity during natural behaviors in such areas as sensory perception, motor sequence generation, and spatial navigation, forging a direct link between cellular and systems neuroscience.

    View Publication Page
    04/14/11 | Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment.
    Epsztein J, Brecht M, Lee AK
    Neuron. 2011 Apr 14;70(1):109-20. doi: 10.1016/j.neuron.2011.03.006

    For each environment a rodent has explored, its hippocampus contains a map consisting of a unique subset of neurons, called place cells, that have spatially tuned spiking there, with the remaining neurons being essentially silent. Using whole-cell recording in freely moving rats exploring a novel maze, we observed differences in intrinsic cellular properties and input-based subthreshold membrane potential levels underlying this division into place and silent cells. Compared to silent cells, place cells had lower spike thresholds and peaked versus flat subthreshold membrane potentials as a function of animal location. Both differences were evident from the beginning of exploration. Additionally, future place cells exhibited higher burst propensity before exploration. Thus, internal settings appear to predetermine which cells will represent the next novel environment encountered. Furthermore, place cells fired spatially tuned bursts with large, putatively calcium-mediated depolarizations that could trigger plasticity and stabilize the new map for long-term storage. Our results provide new insight into hippocampal memory formation.

    View Publication Page