Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

5 Publications

Showing 1-5 of 5 results
Your Criteria:
    07/01/03 | Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels.
    Boland LM, Jiang M, Lee SY, Fahrenkrug SC, Harnett MT, O’Grady SM
    American Journal of Physiology. Cell Physiology. 2003 Jul;285(1):C161-70. doi: 10.1152/ajpcell.00416.2002

    Kv4/K channel-interacting protein (KChIP) potassium channels are a major class of rapidly inactivating K channels in brain and heart. Considering the importance of alternative splicing to the quantitative features of KChIP gating modulation, a previously uncharacterized splice form of KChIP1 was functionally characterized. The KChIP1b splice variant differs from the previously characterized KChIP1a splice form by the inclusion of a novel amino-terminal region that is encoded by an alternative exon that is conserved in mouse, rat, and human genes. The expression of KChIP1b mRNA was high in brain but undetectable in heart or liver by RT-PCR. In cerebellar tissue, KChIP1b and KChIP1a transcripts were expressed at nearly equal levels. Coexpression of KChIP1b or KChIP1a with Kv4.2 channels in oocytes slowed K current decay and destabilized open-inactivated channel gating. Like other KChIP subunits, KChIP1b increased Kv4.2 current amplitude and KChIP1b also shifted Kv4.2 conductance-voltage curves by -10 mV. The development of Kv4.2 channel inactivation accessed from closed gating states was faster with KChIP1b coexpression. Deletion of the novel amino-terminal region in KChIP1b selectively altered the subunit’s modulation of Kv4.2 closed inactivation gating. The role of the KChIP1b NH2-terminal region was further confirmed by direct comparison of the properties of the NH2-terminal deletion mutant and the KChIP1a subunit, which is encoded by a transcript that lacks the novel exon. The features of KChIP1b modulation of Kv4 channels are likely to be conserved in mammals and demonstrate a role for the KChIP1 NH2-terminal region in the regulation of closed inactivation gating.

    View Publication Page
    07/17/03 | Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration.
    Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z
    Neuron. 2003 Jul 17;39(2):217-25

    Local axon degeneration is a common pathological feature of many neurodegenerative diseases and peripheral neuropathies. While it is believed to operate with an apoptosis-independent molecular program, the underlying molecular mechanisms are largely unknown. In this study, we used the degeneration of transected axons, termed "Wallerian degeneration," as a model to examine the possible involvement of the ubiquitin proteasome system (UPS). Inhibiting UPS activity by both pharmacological and genetic means profoundly delays axon degeneration both in vitro and in vivo. In addition, we found that the fragmentation of microtubules is the earliest detectable change in axons undergoing Wallerian degeneration, which among other degenerative events, can be delayed by proteasome inhibitors. Interestingly, similar to transected axons, degeneration of axons from nerve growth factor (NGF)-deprived sympathetic neurons could also be suppressed by proteasome inhibitors. Our findings suggest a possibility that inhibiting UPS activity may serve to retard axon degeneration in pathological conditions.

    View Publication Page
    07/01/03 | Mechanism of hedgehog signaling during Drosophila eye development.
    Pappu KS, Chen R, Middlebrooks BW, Woo C, Heberlein U, Mardon G
    Development. 2003 Jul;130(13):3053-62

    Although Hedgehog (Hh) signaling is essential for morphogenesis of the Drosophila eye, its exact link to the network of tissue-specific genes that regulate retinal determination has remained elusive. In this report, we demonstrate that the retinal determination gene eyes absent (eya) is the crucial link between the Hedgehog signaling pathway and photoreceptor differentiation. Specifically, we show that the mechanism by which Hh signaling controls initiation of photoreceptor differentiation is to alleviate repression of eya and decapentaplegic (dpp) expression by the zinc-finger transcription factor Cubitus interruptus (Ci(rep)). Furthermore, our results suggest that stabilized, full length Ci (Ci(act)) plays little or no role in Drosophila eye development. Moreover, while the effects of Hh are primarily concentration dependent in other tissues, hh signaling in the eye acts as a binary switch to initiate retinal morphogenesis by inducing expression of the tissue-specific factor Eya.

    View Publication Page
    07/23/03 | Striatal proenkephalin gene induction: coordinated regulation by cyclic AMP and calcium pathways.
    Konradi C, Macías W, Dudman JT, Carlson RR
    Brain Research. Molecular Brain Research. 2003 Jul 23;115(2):157-61. doi: 10.3389/fnana.2010.00147

    Enkephalin modulates striatal function, thereby affecting motor performance and addictive behaviors. The proenkephalin gene is also used as a model to study cyclic AMP-mediated gene expression in striatal neurons. The second messenger pathway leading to proenkephalin expression demonstrates how cyclic AMP pathways are synchronized with depolarization. We show that cyclic AMP-mediated regulation of the proenkephalin gene is dependent on the activity of L-type Ca2+ channels. Inhibition of L-type Ca2+ channels blocks forskolin-mediated induction of proenkephalin. The Ca2+-activated kinase, Ca2+/calmodulin kinase, as well as the cyclic AMP-activated kinase, protein kinase A (PKA), are both necessary for the induction of the proenkephalin promoter. Similarly, both kinases are needed for the L-type Ca2+ channel-mediated induction of proenkephalin. This synchronization of second messenger pathways provides a coincidence mechanism that gates proenkephalin synthesis in striatal neurons, ensuring that levels are increased only in the presence of activated PKA and depolarization.

    View Publication Page
    Tjian Lab
    07/10/03 | Transcription regulation and animal diversity.
    Levine M, Tjian R
    Nature. 2003 Jul 10;424:147-51. doi: 10.1073/pnas.1100640108

    Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.

    View Publication Page