Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

58 Publications

Showing 51-58 of 58 results
Your Criteria:

    The developmental mechanisms that regulate the relative size and shape of organs have remained obscure despite almost a century of interest in the problem and the fact that changes in relative size represent the dominant mode of evolutionary change. Here, I investigate how the Hox gene Ultrabithorax (Ubx) instructs the legs on the third thoracic segment of Drosophila melanogaster to develop with a different size and shape from the legs on the second thoracic segment. Through loss-of-function and gain-of-function experiments, I demonstrate that different segments of the leg, the femur and the first tarsal segment, and even different regions of the femur, regulate their size in response to Ubx expression through qualitatively different mechanisms. In some regions, Ubx acts autonomously to specify shape and size, whereas in other regions, Ubx influences size through nonautonomous mechanisms. Loss of Ubx autonomously reduces cell size in the T3 femur, but this reduction seems to be partially compensated by an increase in cell numbers, so that it is unclear what effect cell size and number directly have on femur size. Loss of Ubx has both autonomous and nonautonomous effects on cell number in different regions of the basitarsus, but again there is not a strong correlation between cell size or number and organ size. Total organ size appears to be regulated through mechanisms that operate at the level of the entire leg segment (femur or basitarsus) relatively independently of the behavior of individual subpopulations of cells within the segment.

    View Publication Page
    11/26/03 | The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells.
    Nolan MF, Malleret G, Lee KH, Gibbs E, Dudman JT, Santoro B, Yin D, Thompson RF, Siegelbaum SA, Kandel ER, Morozov A
    Cell. 2003 Nov 26;115(5):551-64. doi: 10.3389/fnana.2010.00147

    In contrast to our increasingly detailed understanding of how synaptic plasticity provides a cellular substrate for learning and memory, it is less clear how a neuron’s voltage-gated ion channels interact with plastic changes in synaptic strength to influence behavior. We find, using generalized and regional knockout mice, that deletion of the HCN1 channel causes profound motor learning and memory deficits in swimming and rotarod tasks. In cerebellar Purkinje cells, which are a key component of the cerebellar circuit for learning of correctly timed movements, HCN1 mediates an inward current that stabilizes the integrative properties of Purkinje cells and ensures that their input-output function is independent of the previous history of their activity. We suggest that this nonsynaptic integrative function of HCN1 is required for accurate decoding of input patterns and thereby enables synaptic plasticity to appropriately influence the performance of motor activity.

    View Publication Page
    Zuker Lab
    10/31/03 | The receptors for mammalian sweet and umami taste.
    Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS
    Cell. 2003 Oct 31;115(3):255-66

    Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.

    View Publication Page
    Tjian Lab
    07/10/03 | Transcription regulation and animal diversity.
    Levine M, Tjian R
    Nature. 2003 Jul 10;424:147-51. doi: 10.1073/pnas.1100640108

    Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.

    View Publication Page
    12/01/03 | Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.
    Kunwar PS, Starz-Gaiano M, Bainton RJ, Heberlein U, Lehmann R
    PLoS Biology. 2003 Dec;1(3):E80. doi: 10.1371/journal.pbio.0000080

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

    View Publication Page
    09/05/03 | Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy.
    Wolf M, Eberhart A, Glossmann H, Striessnig J, Grigorieff N
    Journal of Molecular Biology. 2003 Sep 05;332(1):171-82

    The three-dimensional structure of the skeletal muscle voltage-gated L-type calcium channel (Ca(v)1.1; dihydropyridine receptor, DHPR) was determined using electron cryo-microscopy and single-particle averaging. The structure shows a single channel complex with an approximate total molecular mass of 550 kDa, corresponding to the five known subunits of the DHPR, and bound detergent and lipid. Features visible in our structure together with antibody labeling of the beta and alpha(2) subunits allowed us to assign locations for four of the five subunits within the structure. The most striking feature of the structure is the extra-cellular alpha(2) subunit that protrudes from the membrane domain in close proximity to the alpha(1) subunit. The cytosolic beta subunit is located close to the membrane and adjacent to subunits alpha(1), gamma and delta. Our structure correlates well with the functional and biochemical data available for this channel and suggests a three-dimensional model for the excitation-contraction coupling complex consisting of DHPR tetrads and the calcium release channel.

    View Publication Page
    12/01/03 | What you didn't know about evo-devo
    David L Stern
    Development. 12/2003;130(23):5560-5561. doi: 10.1242/dev.00767

    As most of us are aware, today's primary school, high school and undergraduate biology programs are struggling to incorporate even a fraction of the 'molecular revolution'of biological knowledge and technologies that surround us. In the first term alone, life science and biology classes of the new millennia routinely cover condensed versions of the year-long classes taught in the 60s, 70s and 80s. Teachers no longer have the luxury of spending half a year presenting Mendel and his peas.

    View Publication Page
    12/01/03 | Wind spectra and the response of the cercal system in the cockroach.
    Rinberg D, Davidowitz H
    Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 2003 Dec;189(12):867-76. doi: 10.1007/s00359-003-0460-9

    Experiments on the cercal wind-sensing system of the American cockroach, Periplaneta americana, showed that the firing rate of the interneurons coding wind information depends on the bandwidth of random noise wind stimuli. The firing rate was shown to increase with decreases in the stimulus bandwidth, and be independent of changes in the total power of the stimulus with constant spectral composition. A detailed analysis of ethologically relevant stimulus parameters is presented. A phenomenological model of these relationships and their relevance to wind-mediated cockroach behavior is proposed.

    View Publication Page