Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    02/05/05 | Natural selection and developmental constraints in the evolution of allometries.
    Frankino WA, Zwaan BJ, Stern DL, Brakefield PM
    Science. 2005 Feb 4;307(5710):718-20. doi: 10.1126/science.1105409

    In animals, scaling relationships between appendages and body size exhibit high interspecific variation but low intraspecific variation. This pattern could result from natural selection for specific allometries or from developmental constraints on patterns of differential growth. We performed artificial selection on the allometry between forewing area and body size in a butterfly to test for developmental constraints, and then used the resultant increased range of phenotypic variation to quantify natural selection on the scaling relationship. Our results show that the short-term evolution of allometries is not limited by developmental constraints. Instead, scaling relationships are shaped by strong natural selection.

    View Publication Page
    Tjian Lab
    02/01/05 | Structural studies of the human PBAF chromatin-remodeling complex.
    Leschziner AE, Lemon B, Tjian R, Nogales E
    Structure. 2005 Feb;13(2):267-75. doi: 10.1073/pnas.1100640108

    ATP-dependent chromatin remodeling is one of the central processes responsible for imparting fluidity to chromatin and thus regulating DNA transactions. Although knowledge on this process is accumulating rapidly, the basic mechanism (or mechanisms) by which the remodeling complexes alter the structure of a nucleosome is not yet understood. Structural information on these macromolecular machines should aid in interpreting the biochemical and genetic data; to this end, we have determined the structure of the human PBAF ATP-dependent chromatin-remodeling complex preserved in negative stain by electron microscopy and have mapped the nucleosome binding site using two-dimensional (2D) image analysis. PBAF has an overall C-shaped architecture–with a larger density to which two smaller knobs are attached–surrounding a central cavity; one of these knobs appears to be flexible and occupies different positions in each of the structures determined. The 2D analysis of PBAF:nucleosome complexes indicates that the nucleosome binds in the central cavity.

    View Publication Page