Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

1 Publications

Showing 1-1 of 1 results
Your Criteria:
    03/01/07 | Search for fMRI BOLD signals in networks of spiking neurons.
    Amit DJ, Romani S
    European Journal of Neuroscience. 2007 Mar;25(6):1882-92. doi: 10.1111/j.1460-9568.2007.05408.x

    In a recent experiment, functional magnetic resonance imaging blood oxygen level-dependent (fMRI BOLD) signals were compared in different cortical areas (primary-visual and associative), when subjects were required covertly to name images in two protocols: sequences of images, with and without intervening delays. The amplitude of the BOLD signal in protocols with delay was found to be closer to that without delays in associative areas than in primary areas. The present study provides an exploratory proposal for the identification of the neural activity substrate of the BOLD signal in quasi-realistic networks of spiking neurons, in networks sustaining selective delay activity (associative) and in networks responsive to stimuli, but whose unique stationary state is one of spontaneous activity (primary). A variety of observables are 'recorded' in the network simulations, applying the experimental stimulation protocol. The ratios of the candidate BOLD signals, in the two protocols, are compared in networks with and without delay activity. There are several options for recovering the experimental result in the model networks. One common conclusion is that the distinguishing factor is the presence of delay activity. The effect of NMDAr is marginal. The ultimate quantitative agreement with the experiment results depends on a distinction of the baseline signal level from its value in delay-period spontaneous activity. This may be attributable to the subjects' attention. Modifying the baseline results in a quantitative agreement for the ratios, and provided a definite choice of the candidate signals. The proposed framework produces predictions for the BOLD signal in fMRI experiments, upon modification of the protocol presentation rate and the form of the response function.

    View Publication Page