Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    Kainmueller Lab
    11/01/14 | Active graph matching for automatic joint segmentation and annotation of C. elegans.
    Kainmueller D, Jug F, Rother C, Myers G
    Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2014;17(Pt 1):81-8

    In this work we present a novel technique we term active graph matching, which integrates the popular active shape model into a sparse graph matching problem. This way we are able to combine the benefits of a global, statistical deformation model with the benefits of a local deformation model in form of a second-order random field. We present a new iterative energy minimization technique which achieves empirically good results. This enables us to exceed state-of-the art results for the task of annotating nuclei in 3D microscopic images of C. elegans. Furthermore with the help of the generalized Hough transform we are able to jointly segment and annotate a large set of nuclei in a fully automatic fashion for the first time.

    View Publication Page
    Kainmueller Lab
    09/14/14 | Tracking by assignment facilitates data curation.
    Jug F, Tobias Pietzsch , Kainmueller D, Myers EW
    Medical Image Computing and Computer-Assisted Intervention – MICCAI Workshop 2014. 2014 Sep 14:

    Object tracking is essential for a multitude of biomedical re- search projects. Automated methods are desired in order to avoid im- possible amounts of manual tracking efforts. However, automatically found solutions are not free of errors, and these errors again have to be identified and resolved manually. We propose six innovative ways for semi-automatic curation of automatically found tracking solutions. Respective user interactions are six simple operations: Inclusion and ex- clusion of objects and tracking decisions, specification of the number of objects, and one-click altering of object segmentations. We show how all proposed interactions can be elegantly incorporated into “assignment models” [1,2,3,4,5,6], an innovative and increasingly popular tracking paradigm. Given some user interaction, the tracking engine is capable of computing the respective globally optimal tracking solution efficiently, even benefitting from “warm start”-capabilities. We show that after in- teractively pointing at a single mistake, multiple segmentation and track- ing errors can be fixed automatically in one single re-evaluation, provably leading to the new, feedback-conscious global optimum. 

    View Publication Page