Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

55 Publications

Showing 21-30 of 55 results
Your Criteria:
    Looger LabAhrens Lab
    06/27/19 | Glia accumulate evidence that actions are futile and suppress unsuccessful behavior.
    Mu Y, Bennett DV, Rubinov M, Narayan S, Yang C, Tanimoto M, Mensh BD, Looger LL, Ahrens MB
    Cell. 2019 Jun 27;178(1):27-43. doi: 10.1016/j.cell.2019.05.050

    When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states.

    View Publication Page
    02/25/20 | High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging
    McRaven C, Tanese D, Zhang L, Yang C, Ahrens MB, Emiliani V, Koyama M
    bioRxiv. 2020 Feb 25:. doi: https://doi.org/10.1101/2020.02.21.959650

    The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.

    View Publication Page
    02/27/13 | Identification of nonvisual photomotor response cells in the vertebrate hindbrain.
    Kokel D, Dunn TW, Ahrens MB, Alshut R, Cheung CY, Saint-Amant L, Bruni G, Mateus R, van Ham TJ, Shiraki T, Fukada Y, Kojima D, Yeh JJ, Mikut R, von Lintig J, Engert F, Peters RT
    The Journal of Neuroscience. 2013 Feb 27;33(9):3834-43. doi: 10.1523/JNEUROSCI.3689-12.2013

    Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.

    View Publication Page
    05/10/24 | Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore
    Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Grimm JB, Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Lavis LD, Wang S, Weaver VM, Pedram K
    bioRxiv. 2024 May 10:. doi: 10.1101/2024.05.09.593460

    All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

    View Publication Page
    01/01/08 | Inferring elapsed time from stochastic neural processes.
    Ahrens MB , Sahani M.
    Neural Information Processing Systems. 2008;20:

    Many perceptual processes and neural computations, such as speech recognition, motor control and learning, depend on the ability to measure and mark the passage of time. However, the processes that make such temporal judgements possible are unknown. A number of different hypothetical mechanisms have been advanced, all of which depend on the known, temporally predictable evolution of a neural or psychological state, possibly through oscillations or the gradual decay of a memory trace. Alternatively, judgements of elapsed time might be based on observations of temporally structured, but stochastic processes. Such processes need not be specific to the sense of time; typical neural and sensory processes contain at least some statistical structure across a range of time scales. Here, we investigate the statistical properties of an estimator of elapsed time which is based on a simple family of stochastic process.

    View Publication Page
    01/01/08 | Inferring input nonlinearities in neural encoding models.
    Ahrens MB, Paninski L, Sahani M
    Network. 2008;19(1):35-67. doi: 10.1080/09548980701813936

    We describe a class of models that predict how the instantaneous firing rate of a neuron depends on a dynamic stimulus. The models utilize a learnt pointwise nonlinear transform of the stimulus, followed by a linear filter that acts on the sequence of transformed inputs. In one case, the nonlinear transform is the same at all filter lag-times. Thus, this "input nonlinearity" converts the initial numerical representation of stimulus value to a new representation that provides optimal input to the subsequent linear model. We describe algorithms that estimate both the input nonlinearity and the linear weights simultaneously; and present techniques to regularise and quantify uncertainty in the estimates. In a second approach, the model is generalized to allow a different nonlinear transform of the stimulus value at each lag-time. Although more general, this model is algorithmically more straightforward to fit. However, it has many more degrees of freedom than the first approach, thus requiring more data for accurate estimation. We test the feasibility of these methods on synthetic data, and on responses from a neuron in rodent barrel cortex. The models are shown to predict responses to novel data accurately, and to recover several important neuronal response properties.

    View Publication Page
    02/24/18 | Integrative whole-brain neuroscience in larval zebrafish.
    Vanwalleghem GC, Ahrens MB, Scott EK
    Current Opinion in Neurobiology. 2018 Feb 24;50:136-145. doi: 10.1016/j.conb.2018.02.004

    Due to their small size and transparency, zebrafish larvae are amenable to a range of fluorescence microscopy techniques. With the development of sensitive genetically encoded calcium indicators, this has extended to the whole-brain imaging of neural activity with cellular resolution. This technique has been used to study brain-wide population dynamics accompanying sensory processing and sensorimotor transformations, and has spurred the development of innovative closed-loop behavioral paradigms in which stimulus-response relationships can be studied. More recently, microscopes have been developed that allow whole-brain calcium imaging in freely swimming and behaving larvae. In this review, we highlight the technologies underlying whole-brain functional imaging in zebrafish, provide examples of the sensory and motor processes that have been studied with this technique, and discuss the need to merge data from whole-brain functional imaging studies with neurochemical and anatomical information to develop holistic models of functional neural circuits.

    View Publication Page
    12/29/23 | Ketamine modulates a norepinephrine-astroglial circuit to persistently suppress futility-induced passivity.
    Marc Duque , Alex B. Chen , Eric Hsu , Sujatha Narayan , Altyn Rymbek , Shahinoor Begum , Gesine Saher , Adam E. Cohen , David E. Olson , David A. Prober , Dwight E. Bergles , Mark C. Fishman , Florian Engert , Misha B. Ahrens
    bioRxiv. 2023 Dec 29:. doi: 10.1101/2022.12.29.522099

    Mood-altering compounds hold promise for the treatment of many psychiatric disorders, such as depression, but connecting their molecular, circuit, and behavioral effects has been challenging. Here we find that, analogous to effects in rodent learned helplessness models, ketamine pre-exposure persistently suppresses futility-induced passivity in larval zebrafish. While antidepressants are thought to primarily act on neurons, brain-wide imaging in behaving zebrafish showed that ketamine elevates intracellular calcium in astroglia for many minutes, followed by persistent calcium downregulation post-washout. Calcium elevation depends on astroglial α1-adrenergic receptors and is required for suppression of passivity. Chemo-/optogenetic perturbations of noradrenergic neurons and astroglia demonstrate that the aftereffects of glial calcium elevation are sufficient to suppress passivity by inhibiting neuronal-astroglial integration of behavioral futility. Imaging in mouse cortex reveals that ketamine elevates astroglial calcium through conserved pathways, suggesting that ketamine exerts its behavioral effects by persistently modulating evolutionarily ancient neuromodulatory systems spanning neurons and astroglia.

    View Publication Page
    02/13/15 | Labeling of active neural circuits in vivo with designed calcium integrators.
    Fosque BF, Sun Y, Dana H, Yang C, Ohyama T, Tadross MR, Patel R, Zlatic M, Kim DS, Ahrens MB, Jayaraman V, Looger LL, Schreiter ER
    Science. 2015 Feb 13;347(6223):755-60. doi: 10.1126/science.1260922

    The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies.

    View Publication Page
    01/01/06 | Large-scale biophysical parameter estimation in single neurons via constrained linear regression.
    Ahrens M, Huys Q, Paninski L
    Neural Information Processing Systems. 2006;18:

    Our understanding of the input-output function of single cells has been substantially advanced by biophysically accurate multi-compartmental models. The large number of parameters needing hand tuning in these models has, however, somewhat hampered their applicability and interpretability. Here we propose a simple and well-founded method for automatic estimation of many of these key parameters: 1) the spatial distribution of channel densities on the cell’s membrane; 2) the spatiotemporal pattern of synaptic input; 3) the channels’ reversal potentials; 4) the intercompartmental conductances; and 5) the noise level in each compartment. We assume experimental access to: a) the spatiotemporal voltage signal in the dendrite (or some contiguous subpart thereof, e.g. via voltage sensitive imaging techniques), b) an approximate kinetic description of the channels and synapses present in each compartment, and c) the morphology of the part of the neuron under investigation. The key observation is that, given data a)-c), all of the parameters 1)-4) may be simultaneously inferred by a version of constrained linear regression; this regression, in turn, is efficiently solved using standard algorithms, without any “local minima” problems despite the large number of parameters and complex dynamics. The noise level 5) may also be estimated by standard techniques. We demonstrate the method’s accuracy on several model datasets, and describe techniques for quantifying the uncertainty in our estimates.

    View Publication Page