Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3901 Publications

Showing 31-40 of 3901 results
06/11/18 | A cerebellar role in evidence-guided decision-making
Deverett B, Koay SA, Oostland M, Wang SS
bioRxiv. 06/2018:. doi: 10.1101/343095

To make successful evidence-based decisions, the brain must rapidly and accurately transform sensory inputs into specific goal-directed behaviors. Most experimental work on this subject has focused on forebrain mechanisms. Here we show that during perceptual decision-making over a period of seconds, decision-, sensory-, and error-related information converge on the lateral posterior cerebellum in crus I, a structure that communicates bidirectionally with numerous forebrain regions. We trained mice on a novel evidence-accumulation task and demonstrated that cerebellar inactivation reduces behavioral accuracy without impairing motor parameters of action. Using two-photon calcium imaging, we found that Purkinje cell somatic activity encoded choice- and evidence-related variables. Decision errors were represented by dendritic calcium spikes, which are known to drive plasticity. We propose that cerebellar circuitry may contribute to the set of distributed computations in the brain that support accurate perceptual decision-making.

View Publication Page
06/15/21 | A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation.
Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan JM, Huang C, Hantman AW, Rochefort NL, Duguid I
Neuron. 2021 Jun 15;109(14):2326-2338. doi: 10.1016/j.neuron.2021.05.016

Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.

View Publication Page
Zuker Lab
03/09/01 | A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila.
Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R
Cell. 2001 Mar 9;104(5):661-73

A novel family of candidate gustatory receptors (GRs) was recently identified in searches of the Drosophila genome. We have performed in situ hybridization and transgene experiments that reveal expression of these genes in both gustatory and olfactory neurons in adult flies and larvae. This gene family is likely to encode both odorant and taste receptors. We have visualized the projections of chemosensory neurons in the larval brain and observe that neurons expressing different GRs project to discrete loci in the antennal lobe and subesophageal ganglion. These data provide insight into the diversity of chemosensory recognition and an initial view of the representation of gustatory information in the fly brain.

View Publication Page
Fetter LabCardona Lab
02/18/16 | A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.
Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A, Nose A
eLife. 2016 Feb 18;5:. doi: 10.7554/eLife.13253

Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.

View Publication Page
08/09/16 | A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right.
Koyama M, Minale F, Shum J, Nishimura N, Schaffer CB, Fetcho JR
Elife. 2016 08 09;5:. doi: 10.7554/eLife.16808

Animals collect sensory information from the world and make adaptive choices about how to respond to it. Here, we reveal a network motif in the brain for one of the most fundamental behavioral choices made by bilaterally symmetric animals: whether to respond to a sensory stimulus by moving to the left or to the right. We define network connectivity in the hindbrain important for the lateralized escape behavior of zebrafish and then test the role of neurons by using laser ablations and behavioral studies. Key inhibitory neurons in the circuit lie in a column of morphologically similar cells that is one of a series of such columns that form a developmental and functional ground plan for building hindbrain networks. Repetition within the columns of the network motif we defined may therefore lie at the foundation of other lateralized behavioral choices.

View Publication Page
08/30/17 | A circuit node that integrates convergent input from neuromodulatory and social behavior-promoting neurons to control aggression in Drosophila.
Watanabe K, Chiu H, Pfeiffer BD, Wong AM, Hoopfer ED, Rubin GM, Anderson DJ
Neuron. 2017 Aug 30;95(5):1112-1128.e7. doi: 10.1016/j.neuron.2017.08.017

Diffuse neuromodulatory systems such as norepinephrine (NE) control brain-wide states such as arousal, but whether they control complex social behaviors more specifically is not clear. Octopamine (OA), the insect homolog of NE, is known to promote both arousal and aggression. We have performed a systematic, unbiased screen to identify OA receptor-expressing neurons (OARNs) that control aggression in Drosophila. Our results uncover a tiny population of male-specific aSP2 neurons that mediate a specific influence of OA on aggression, independent of any effect on arousal. Unexpectedly, these neurons receive convergent input from OA neurons and P1 neurons, a population of FruM(+) neurons that promotes male courtship behavior. Behavioral epistasis experiments suggest that aSP2 neurons may constitute an integration node at which OAergic neuromodulation can bias the output of P1 neurons to favor aggression over inter-male courtship. These results have potential implications for thinking about the role of related neuromodulatory systems in mammals.

View Publication Page
10/01/04 | A combinatorial method for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative time order.
Lee AK, Wilson MA
Journal of Neurophysiology. 2004 Oct;92(4):2555-73. doi: 10.1152/jn.01030.2003

Information processing in the brain is believed to require coordinated activity across many neurons. With the recent development of techniques for simultaneously recording the spiking activity of large numbers of individual neurons, the search for complex multicell firing patterns that could help reveal this neural code has become possible. Here we develop a new approach for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative firing order. Specifically, we develop a combinatorial method for quantifying the degree of matching between a "reference sequence" of N distinct "letters" (representing a particular target order of firing by N cells) and an arbitrarily long "word" composed of any subset of those letters including repeats (representing the relative time order of spikes in an arbitrary firing pattern). The method involves computing the probability that a random permutation of the word’s letters would by chance alone match the reference sequence as well as or better than the actual word does, assuming all permutations were equally likely. Lower probabilities thus indicate better matching. The overall degree and statistical significance of sequence matching across a heterogeneous set of words (such as those produced during the course of an experiment) can be computed from the corresponding set of probabilities. This approach can reduce the sample size problem associated with analyzing complex firing patterns. The approach is general and thus applicable to other types of neural data beyond multiple spike trains, such as EEG events or imaging signals from multiple locations. We have recently applied this method to quantify memory traces of sequential experience in the rodent hippocampus during slow wave sleep.

View Publication Page
Zlatic Lab
04/28/11 | A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS.
Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, Kerr R, Luo L, Zlatic M, Kolodkin AL
Neuron. 2011 Apr 28;70(2):281-98. doi: 10.1016/j.neuron.2011.02.050

Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.

View Publication Page
07/09/15 | A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system.
Shinomiya K, Takemura S, Rivlin PK, Plaza SM, Scheffer LK, Meinertzhagen IA
Frontiers in Neural Circuits. 2015;9:33. doi: 10.3389/fncir.2015.00033

Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing-the internal chiasma-arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin.

View Publication Page
11/01/20 | A community for Black chemists.
Beyene AG, Panescu P
Nature Chemistry. 2020 Nov 01;12(11):988-989. doi: 10.1038/s41557-020-00572-3