Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

121 Publications

Showing 21-30 of 121 results
Your Criteria:
    02/01/24 | Brain-wide neural activity underlying memory-guided movement.
    Chen S, Liu Y, Wang ZA, Colonell J, Liu LD, Hou H, Tien N, Wang T, Harris T, Druckmann S, Li N, Svoboda K
    Cell. 2024 Feb 01;187(3):676-691.e16. doi: 10.1016/j.cell.2023.12.035

    Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.

    View Publication Page
    01/11/24 | Bridging gaps in traditional research training with iBiology Courses.
    Schnoes AM, Green NH, Nguyen TA, Vale RD, Goodwin SS, Behrman SL
    PLoS Biology. 2024 Jan 11;22(1):e3002458. doi: 10.1371/journal.pbio.3002458

    iBiology Courses provide trainees with just-in-time learning resources to become effective researchers. These courses can help scientists build core research skills, plan their research projects and careers, and learn from scientists with diverse backgrounds.

    View Publication Page
    05/15/24 | Building momentum through networks: Bioimaging across the Americas
    De Niz M, Escobedo García R, Terán Ramirez C, Pakowski Y, Abonza Y, Bialy N, Orr VL, Olivera A, Abonza V, Alleva K, Allodi S, Almeida MF, Becerril Cuevas AR, Bonnet F, Burgos Solorio A, Chew T, Chiabrando G, Cimini B, Cleret-Buhot A, Contreras Jiménez G, Daza L, De Sá V, De Val N, Delgado-Álvarez DL, Eliceiri K, Fiolka R, Grecco H, Hanein D, Hernández Herrera P, Hockberger P, Hernandez HO, Hernandez Guadarrama Y, Itano M, Jacobs CA, Jiménez-García LF, Jiménez Sabinina V, Kamaid A, Keppler A, Kumar A, Lacoste J, Lovy A, Luby-Phelps K, Mahadevan-Jansen A, Malacrida L, Mehta SB, Miller C, Miranda K, Moore JA, North A, O'Toole P, Olivares Urbano M, Pietrasanta LI, Portugal RV, Rossi AH, Sanchez Contreras J, Strambio-De-Castilla C, Soldevila G, Vale B, Vazquez D, Wood C, Brown CM, Guerrero A
    Journal of Microscopy. 2024 May 15;n/a:. doi: https://doi.org/10.1111/jmi.13318

    In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

    View Publication Page
    03/13/24 | Carbon Nanomaterial Fluorescent Probes and Their Biological Applications
    Krasley AT, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS
    Chemical Reviews. 2024 Mar 13:. doi: 10.1021/acs.chemrev.3c00581

    Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.

    View Publication Page
    03/06/24 | Cell division machinery drives cell-specific gene activation during differentiation in .
    Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS
    Proc Natl Acad Sci U S A. 2024 Mar 6;121(13):e2400584121. doi: 10.1073/pnas.2400584121

    When faced with starvation, the bacterium transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σ is exclusively activated in the smaller daughter cell. Compartment-specific activation of σ requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σ in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.

    View Publication Page
    02/12/24 | Cellpose3: one-click image restoration for improved cellular segmentation.
    Stringer C, Pachitariu M
    bioRxiv. 2024 Feb 12:. doi: 10.1101/2024.02.10.579780

    Generalist methods for cellular segmentation have good out-of-the-box performance on a variety of image types. However, existing methods struggle for images that are degraded by noise, blurred or undersampled, all of which are common in microscopy. We focused the development of Cellpose3 on addressing these cases, and here we demonstrate substantial out-of-the-box gains in segmentation and image quality for noisy, blurry or undersampled images. Unlike previous approaches, which train models to restore pixel values, we trained Cellpose3 to output images that are well-segmented by a generalist segmentation model, while maintaining perceptual similarity to the target images. Furthermore, we trained the restoration models on a large, varied collection of datasets, thus ensuring good generalization to user images. We provide these tools as “one-click” buttons inside the graphical interface of Cellpose as well as in the Cellpose API.

    View Publication Page
    05/14/24 | Compartmentalized Cytoplasmic Flows Direct Protein Transport to the Cell’s Leading Edge
    Galbraith CG, English BP, Boehm U, Galbraith JA
    bioRxiv. 2024 May 14:. doi: 10.1101/2024.05.12.593794

    Inside the cell, proteins essential for signaling, morphogenesis, and migration navigate complex pathways, typically via vesicular trafficking or microtubule-driven mechanisms 1-3. However, the process by which soluble cytoskeletal monomers maneuver through the cytoplasm’s ever-changing environment to reach their destinations without using these pathways remains unknown. 4-6 Here, we show that actin cytoskeletal treadmilling leads to the formation of a semi-permeable actin-myosin barrier, creating a specialized compartment separated from the rest of the cell body that directs proteins toward the cell edge by advection, diffusion facilitated by fluid flow. Contraction at this barrier generates a molecularly non-specific fluid flow that transports actin, actin-binding proteins, adhesion proteins, and even inert proteins forward. The local curvature of the barrier specifically targets these proteins toward protruding edges of the leading edge, sites of new filament growth, effectively coordinating protein distribution with cellular dynamics. Outside this compartment, diffusion remains the primary mode of protein transport, contrasting sharply with the directed advection within. This discovery reveals a novel protein transport mechanism that redefines the front of the cell as a pseudo-organelle, actively orchestrating protein mobilization for cellular front activities such as protrusion and adhesion. By elucidating a new model of protein dynamics at the cellular front, this work contributes a critical piece to the puzzle of how cells adapt their internal structures for targeted and rapid response to extracellular cues. The findings challenge the current understanding of intracellular transport, suggesting that cells possess highly specialized and previously unrecognized organizational strategies for managing protein distribution efficiently, providing a new framework for understanding the cellular architecture’s role in rapid response and adaptation to environmental changes.

    View Publication Page
    04/18/24 | Connectome-driven neural inventory of a complete visual system
    Aljoscha Nern , Frank Loesche , Shin-ya Takemura , Laura E Burnett , Marisa Dreher , Eyal Gruntman , Judith Hoeller , Gary B Huang , Michal Januszewski , Nathan C Klapoetke , Sanna Koskela , Kit D Longden , Zhiyuan Lu , Stephan Preibisch , Wei Qiu , Edward M Rogers , Pavithraa Seenivasan , Arthur Zhao , John Bogovic , Brandon S Canino , Jody Clements , Michael Cook , Samantha Finley-May , Miriam A Flynn , Imran Hameed , Kenneth J Hayworth , Gary Patrick Hopkins , Philip M Hubbard , William T Katz , Julie Kovalyak , Shirley A Lauchie , Meghan Leonard , Alanna Lohff , Charli A Maldonado , Caroline Mooney , Nneoma Okeoma , Donald J Olbris , Christopher Ordish , Tyler Paterson , Emily M Phillips , Tobias Pietzsch , Jennifer Rivas Salinas , Patricia K Rivlin , Ashley L Scott , Louis A Scuderi , Satoko Takemura , Iris Talebi , Alexander Thomson , Eric T Trautman , Lowell Umayam , Claire Walsh , John J Walsh , C Shan Xu , Emily A Yakal , Tansy Yang , Ting Zhao , Jan Funke , Reed George , Harald F Hess , Gregory S X E Jefferis , Christopher Knecht , Wyatt Korff , Stephen M Plaza , Sandro Romani , Stephan Saalfeld , Louis K Scheffer , Stuart Berg , Gerald M Rubin , Michael B Reiser
    bioRxiv. 2024 Apr 18:. doi: 10.1101/2024.04.16.589741

    Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain’s volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male Drosophila central nervous system FIB-SEM volume and a comprehensive inventory of the fly’s visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the 53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in Drosophila, a foundation for a deeper understanding of sensory processing.

    View Publication Page
    04/25/24 | Connectomic Analysis of Mitochondria in the Central Brain of Drosophila
    Patricia K Rivlin , Michal Januszewski , Kit D Longden , Erika Neace , Louis K Scheffer , Christopher Ordish , Jody Clements , Elliott Phillips , Natalie Smith , Satoko Takemura , Lowell Umayam , Claire Walsh , Emily A Yakal , Stephen M Plaza , Stuart Berg
    bioRxiv. 2024 Apr 25:. doi: 10.1101/2024.04.21.590464

    Mitochondria are an integral part of the metabolism of a neuron. EM images of fly brain volumes, taken for connectomics, contain mitochondria as well as the cells and synapses that have already been reported. Here, from the Drosophila hemibrain dataset, we extract, classify, and measure approximately 6 million mitochondria among roughly 21 thousand neurons of more than 5500 cell types. Each mitochondrion is classified by its appearance - dark and dense, light and sparse, or intermediate - and the location, orientation, and size (in voxels) are annotated. These mitochondria are added to our publicly available data portal, and each synapse is linked to its closest mitochondrion. Using this data, we show quantitative evidence that mitochodrial trafficing extends to the smallest dimensions in neurons. The most basic characteristics of mitochondria - volume, distance from synapses, and color - vary considerably between cell types, and between neurons with different neurotransmitters. We find that polyadic synapses with more post-synaptic densities (PSDs) have closer and larger mitochondria on the pre-synaptic side, but smaller and more distant mitochondria on the PSD side. We note that this relationship breaks down for synapses with only one PSD, suggesting a different role for such synapses.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    04/06/24 | Convolutional Neural Network Transformer (CNNT) for Fluorescence Microscopy image Denoising with Improved Generalization and Fast Adaptation
    Azaan Rehman , Alexander Zhovmer , Ryo Sato , Yosuke Mukoyama , Jiji Chen , Alberto Rissone , Rosa Puertollano , Harshad Vishwasrao , Hari Shroff , Christian A. Combs , Hui Xue
    arXiv. 2024 Apr 6:

    Deep neural networks have been applied to improve the image quality of fluorescence microscopy imaging. Previous methods are based on convolutional neural networks (CNNs) which generally require more time-consuming training of separate models for each new imaging experiment, impairing the applicability and generalization. Once the model is trained (typically with tens to hundreds of image pairs) it can then be used to enhance new images that are like the training data. In this study, we proposed a novel imaging-transformer based model, Convolutional Neural Network Transformer (CNNT), to outperform the CNN networks for image denoising. In our scheme we have trained a single CNNT based backbone model from pairwise high-low SNR images for one type of fluorescence microscope (instance structured illumination, iSim). Fast adaption to new applications was achieved by fine-tuning the backbone on only 5-10 sample pairs per new experiment. Results show the CNNT backbone and fine-tuning scheme significantly reduces the training time and improves the image quality, outperformed training separate models using CNN approaches such as - RCAN and Noise2Fast. Here we show three examples of the efficacy of this approach on denoising wide-field, two-photon and confocal fluorescence data. In the confocal experiment, which is a 5 by 5 tiled acquisition, the fine-tuned CNNT model reduces the scan time form one hour to eight minutes, with improved quality.

    View Publication Page