Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

17 Publications

Showing 11-17 of 17 results
Your Criteria:
    Bock Lab
    03/10/11 | Network anatomy and in vivo physiology of visual cortical neurons.
    Bock DD, Lee WA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC
    Nature. 2011 Mar 10;471(7337):177-82. doi: 10.1038/nature09802

    In the cerebral cortex, local circuits consist of tens of thousands of neurons, each of which makes thousands of synaptic connections. Perhaps the biggest impediment to understanding these networks is that we have no wiring diagrams of their interconnections. Even if we had a partial or complete wiring diagram, however, understanding the network would also require information about each neuron’s function. Here we show that the relationship between structure and function can be studied in the cortex with a combination of in vivo physiology and network anatomy. We used two-photon calcium imaging to characterize a functional property–the preferred stimulus orientation–of a group of neurons in the mouse primary visual cortex. Large-scale electron microscopy of serial thin sections was then used to trace a portion of these neurons’ local network. Consistent with a prediction from recent physiological experiments, inhibitory interneurons received convergent anatomical input from nearby excitatory neurons with a broad range of preferred orientations, although weak biases could not be rejected.

    View Publication Page
    Card LabBock LabFlyLight
    02/28/19 | Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway.
    Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM
    Current Biology : CB. 2019 Feb 28;29(6):1073. doi: 10.1016/j.cub.2019.01.079

    Identified neuron classes in vertebrate cortical [1-4] and subcortical [5-8] areas and invertebrate peripheral [9-11] and central [12-14] brain neuropils encode specific visual features of a panorama. How downstream neurons integrate these features to control vital behaviors, like escape, is unclear [15]. In Drosophila, the timing of a single spike in the giant fiber (GF) descending neuron [16-18] determines whether a fly uses a short or long takeoff when escaping a looming predator [13]. We previously proposed that GF spike timing results from summation of two visual features whose detection is highly conserved across animals [19]: an object's subtended angular size and its angular velocity [5-8, 11, 20, 21]. We attributed velocity encoding to input from lobula columnar type 4 (LC4) visual projection neurons, but the size-encoding source remained unknown. Here, we show that lobula plate/lobula columnar, type 2 (LPLC2) visual projection neurons anatomically specialized to detect looming [22] provide the entire GF size component. We find LPLC2 neurons to be necessary for GF-mediated escape and show that LPLC2 and LC4 synapse directly onto the GF via reconstruction in a fly brain electron microscopy (EM) volume [23]. LPLC2 silencing eliminates the size component of the GF looming response in patch-clamp recordings, leaving only the velocity component. A model summing a linear function of angular velocity (provided by LC4) and a Gaussian function of angular size (provided by LPLC2) replicates GF looming response dynamics and predicts the peak response time. We thus present an identified circuit in which information from looming feature-detecting neurons is combined by a common post-synaptic target to determine behavioral output.

    View Publication Page
    05/21/19 | Neurogenetic dissection of the lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body.
    Dolan M, Frechter S, Bates AS, Dan C, Huoviala P, Roberts RJ, Schlegel P, Dhawan S, Tabano R, Dionne H, Christoforou C, Close K, Sutcliffe B, Giuliani B, Li F, Costa M, Ihrke G, Meissner GW, Bock DD, Aso Y, Rubin GM, Jefferis GS
    Elife. 2019 May 21;8:. doi: 10.7554/eLife.43079

    Animals exhibit innate behaviours to a variety of sensory stimuli including olfactory cues. In , one higher olfactory centre, the lateral horn (LH), is implicated in innate behaviour. However, our structural and functional understanding of the LH is scant, in large part due to a lack of sparse neurogenetic tools for this region. We generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell types. We use these to create an anatomical and neurotransmitter map of the LH and link this to EM connectomics data. We find ~30% of LH projections converge with outputs from the mushroom body, site of olfactory learning and memory. Using optogenetic activation, we identify LH cell types that drive changes in valence behavior or specific locomotor programs. In summary, we have generated a resource for manipulating and mapping LH neurons, providing new insights into the circuit basis of innate and learned olfactory behavior.

    View Publication Page
    Bock Lab
    10/01/13 | Optimizing the quantity/quality trade-off in connectome inference.
    Priebe CE, Vogelstein J, Bock D
    Communications in Statistics-Theory and Methods. 2013 Oct;42:3455-62. doi: 10.1080/03610926.2011.630768

    We demonstrate a meaningful prospective power analysis for an (admittedly idealized) illustrative connectome inference task. Modeling neurons as vertices and synapses as edges in a simple random graph model, we optimize the trade-off between the number of (putative) edges identified and the accuracy of the edge identification procedure. We conclude that explicit analysis of the quantity/quality trade-off is imperative for optimal neuroscientific experimental design. In particular, identifying edges faster/more cheaply, but with more error, can yield superior inferential performance.

    View Publication Page
    Bock Lab
    01/16/19 | Regulation of modulatory cell activity across olfactory structures in Drosophila melanogaster.
    Zhang X, Coates K, Dacks A, Gunay C, Lauritzen JS, Li F, Calle-Schuler SA, Bock DD, Gaudry Q
    bioRxiv. 2019 Jan 16:. doi: 10.1101/522177

    All centralized nervous systems possess modulatory neurons that arborize broadly across multiple brain regions. Such modulatory systems are critical for proper sensory, motor, and cognitive processing. How single modulatory neurons integrate into circuits within their target destination remains largely unexplored due to difficulties in both labeling individual cells and imaging across distal parts of the CNS. Here, we take advantage of an identified modulatory neuron in Drosophila that arborizes in multiple olfactory neuropils. We demonstrate that this serotonergic neuron has opposing odor responses in its neurites of the antennal lobe and lateral horn, first and second order olfactory neuropils respectively. Specifically, processes of this neuron in the antennal lobe have responses that are inhibitory and odor-independent, while lateral horn responses are excitatory and odor-specific. The results show that widespread modulatory neurons may not function purely as integrate-and-fire cells, but rather their transmitter release is locally regulated based on neuropil. As nearly all vertebrate and invertebrate neurons are subject to synaptic inputs along their dendro-axonic axis, it is likely that our findings generalize across phylogeny and other broadly-projecting modulatory systems.

    View Publication Page
    Bock Lab
    06/18/13 | The Open Connectome Project Data Cluster: Scalable analysis and vision for high-throughput neuroscience.
    Burns R, Roncal WG, Kleissas D, Lillaney K, Manavalan P, Perlman E, Berger DR, Bock DD, Chung K, Grosenick L, Kasthuri N, Weiler NC, Deisseroth K, Kazhdan M, Lichtman J, Reid RC, Smith SJ, Szalay AS, Vogelstein JT, Vogelstein RJ
    Scientific and Statistical Database Management: International Conference, SSDBM ... : Proceedings. International Conference on Scientific and Statistical Database Management. 2013 Jun 18:. doi: 10.1145/2484838.2484870

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes- neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

    View Publication Page
    Bock Lab
    02/01/12 | Volume electron microscopy for neuronal circuit reconstruction.
    Briggman KL, Bock DD
    Current Opinion in Neurobiology. 2012 Feb;22(1):154-61. doi: 10.1016/j.conb.2011.10.022

    The last decade has seen a rapid increase in the number of tools to acquire volume electron microscopy (EM) data. Several new scanning EM (SEM) imaging methods have emerged, and classical transmission EM (TEM) methods are being scaled up and automated. Here we summarize the new methods for acquiring large EM volumes, and discuss the tradeoffs in terms of resolution, acquisition speed, and reliability. We then assess each method’s applicability to the problem of reconstructing anatomical connectivity between neurons, considering both the current capabilities and future prospects of the method. Finally, we argue that neuronal ’wiring diagrams’ are likely necessary, but not sufficient, to understand the operation of most neuronal circuits: volume EM imaging will likely find its best application in combination with other methods in neuroscience, such as molecular biology, optogenetics, and physiology.

    View Publication Page