Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

152 Publications

Showing 151-152 of 152 results
Your Criteria:
    01/01/91 | Wing buzzing by male orchid bees, Eulaema meriana (Hymenoptera: Apidae)
    David L Stern , Robert Dudley
    Journal of the Kansas Entomological Society;64(1):88-94

    Male orchid bees of the species Eulaema meriana buzz their wings while stationary at territory perches. During buzzing, wings are first positioned laterally and then moved in a plane parallel to the ground, which probably generates a substantial airflow past the body. Within a perching episode, the ratio of buzz to pause duration decreases nonlinearly. The incidence of wing buzzing increases with ambient temperature and with duration of activity. Bees never defended territories when ambient temperatures exceeded 28.5°C. Wing buzzing may be a visual or acoustic display to conspecifics, although the brightly colored abdomen is never obscured by the wings during buzzing, and the sounds of wing buzzing are low in amplitude. The increase in buzzing frequency with increased ambient temperature and the nonlinear decrease in buzz to pause duration during perching suggest that wing buzzing may be a thermoregulatory mechanism.

    View Publication Page
    09/01/06 | Wing dimorphism in aphids.
    Braendle C, Davis GK, Brisson JA, Stern DL
    Heredity (Edinb). 2006 Sep;97(3):192-9. doi: 10.1038/sj.hdy.6800863

    Many species of insects display dispersing and nondispersing morphs. Among these, aphids are one of the best examples of taxa that have evolved specialized morphs for dispersal versus reproduction. The dispersing morphs typically possess a full set of wings as well as a sensory and reproductive physiology that is adapted to flight and reproducing in a new location. In contrast, the nondispersing morphs are wingless and show adaptations to maximize fecundity. In this review, we provide an overview of the major features of the aphid wing dimorphism. We first provide a description of the dimorphism and an overview of its phylogenetic distribution. We then review what is known about the mechanisms underlying the dimorphism and end by discussing its evolutionary aspects.

    View Publication Page