Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4108 Publications

Showing 3511-3520 of 4108 results
04/01/25 | Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Theta but not Ripple Oscillations During Novel Exploration.
Bei-Jung Lin , Tsai-Wen Chen , En-Li Chen , Eric R. Schreiter
eLife. 2025 Apr 1:. doi: 10.7554/elife.96718.2

Synchronous neuronal ensembles play a pivotal role in the consolidation of long-term memory in the hippocampus. However, their organization during the acquisition of spatial memory remains less clear. In this study, we used neuronal population voltage imaging to investigate the synchronization patterns of CA1 pyramidal neuronal ensembles during the exploration of a new environment, a critical phase for spatial memory acquisition. We found synchronous ensembles comprising approximately 40% of CA1 pyramidal neurons, firing simultaneously in brief windows (∼25ms) during immobility and locomotion in novel exploration. Notably, these synchronous ensembles were not associated with ripple oscillations but were instead phase-locked to local field potential theta waves. Specifically, the subthreshold membrane potentials of neurons exhibited coherent theta oscillations with a depolarizing peak at the moment of synchrony. Among newly formed place cells, pairs with more robust synchronization during locomotion displayed more distinct place-specific activities. These findings underscore the role of synchronous ensembles in coordinating place cells of different place fields.

View Publication Page
05/02/12 | Synergistic actions of metabotropic acetylcholine and glutamate receptors on the excitability of hippocampal CA1 pyramidal neurons.
Park J, Spruston N
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2012 May 2;32(18):6081-91. doi: 10.1523/JNEUROSCI.6519-11.2012

A variety of neurotransmitters are responsible for regulating neural activity during different behavioral states. Unique responses to combinations of neurotransmitters provide a powerful mechanism by which neural networks could be differentially activated during a broad range of behaviors. Here, we show, using whole-cell recordings in rat hippocampal slices, that group I metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChRs) synergistically increase the excitability of hippocampal CA1 pyramidal neurons by converting the post-burst afterhyperpolarization to an afterdepolarization via a rapidly reversible upregulation of Ca(v)2.3 R-type calcium channels. Coactivation of mAChRs and mGluRs also induced a long-lasting enhancement of the responses mediated by each receptor type. These results suggest that cooperative signaling via mAChRs and group I mGluRs could provide a mechanism by which cognitive processes may be modulated by conjoint activation of two separate neurotransmitter systems.

View Publication Page
Singer Lab
04/15/15 | Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences.
Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK, Yoon YJ, Cox D, Singer RH, Hodgson L
Genes & Development. 2015 Apr 15;29(8):876-86. doi: 10.1101/gad.259358.115

Repetitive nucleotide or amino acid sequences are often engineered into probes and biosensors to achieve functional readouts and robust signal amplification. However, these repeated sequences are notoriously prone to aberrant deletion and degradation, impacting the ability to correctly detect and interpret biological functions. Here, we introduce a facile and generalizable approach to solve this often unappreciated problem by modifying the nucleotide sequences of the target mRNA to make them nonrepetitive but still functional ("synonymous"). We first demonstrated the procedure by designing a cassette of synonymous MS2 RNA motifs and tandem coat proteins for RNA imaging and showed a dramatic improvement in signal and reproducibility in single-RNA detection in live cells. The same approach was extended to enhancing the stability of engineered fluorescent biosensors containing a fluorescent resonance energy transfer (FRET) pair of fluorescent proteins on which a great majority of systems thus far in the field are based. Using the synonymous modification to FRET biosensors, we achieved correct expression of full-length sensors, eliminating the aberrant truncation products that often were assumed to be due to nonspecific proteolytic cleavages. Importantly, the biological interpretations of the sensor are significantly different when a correct, full-length biosensor is expressed. Thus, we show here a useful and generally applicable method to maintain the integrity of expressed genes, critical for the correct interpretation of probe readouts.

View Publication Page
01/01/11 | Synthesis and utility of fluorogenic acetoxymethyl ethers.
Lavis LD, Chao T, Raines RT
Chemical Science. 2011 Jan 1;2(3):521-30. doi: 10.1039/C0SC00466A

Phenolic fluorophores such as fluorescein, Tokyo Green, resorufin, and their derivatives are workhorses of biological science. Acylating the phenolic hydroxyl group(s) in these fluorophores masks their fluorescence. The ensuing ester is a substrate for cellular esterases, which can restore fluorescence. These esters are, however, notoriously unstable to hydrolysis, severely compromising their utility. The acetoxymethyl (AM) group is an esterase-sensitive motif that can mask polar functionalities in small molecules. Here, we report on the use of AM ether groups to mask phenolic fluorophores. The resulting profluorophores have a desirable combination of low background fluorescence, high chemical stability, and high enzymatic reactivity, both in vitro and in cellulo. These simple phenyl ether-based profluorophores could supplement or supplant the use of phenyl esters for imaging biochemical and biological systems.

View Publication Page
Sternson Lab
12/27/01 | Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin.
Sternson SM, Wong JC, Grozinger CM, Schreiber SL
Organic Letters. 2001 Dec 27;3(26):4239-42

Seventy-two hundred potential inhibitors of the histone deacetylase (HDAC) enzyme family, based on a 1,3-dioxane diversity structure, were synthesized on polystyrene macrobeads. The compounds were arrayed for biological assays in a "one bead-one stock solution" format. Metal-chelating functional groups were used to direct the 1,3-dioxanes to HDAC enzymes, which are zinc hydrolases. Representative structures from this library were tested for inhibitory activity and the 1,3-dioxane structure was shown to be compatible with HDAC inhibition. [structure: see text]

View Publication Page
12/11/15 | Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy.
Grimm JB, Klein T, Kopek BG, Shtengel G, Hess HF, Sauer M, Lavis LD
Angewandte Chemie (International ed. in English). 2015 Dec 11;55(5):1723-7. doi: 10.1002/anie.201509649

The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules.

View Publication Page
09/19/17 | Synthesis of Janelia Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments.
Grimm JB, Brown TA, English BP, Lionnet T, Lavis LD
Methods in Molecular Biology (Clifton, N.J.). 2017;1663:179-188. doi: 10.1007/978-1-4939-7265-4_15

The development of genetically encoded self-labeling protein tags such as the HaloTag and SNAP-tag has expanded the utility of chemical dyes in microscopy. Intracellular labeling using these systems requires small, cell-permeable dyes with high brightness and photostability. We recently discovered a general method to improve the properties of classic fluorophores by replacing N,N-dimethylamino groups with four-membered azetidine rings to create the "Janelia Fluor" dyes. Here, we describe the synthesis of the HaloTag and SNAP-tag ligands of Janelia Fluor 549 and Janelia Fluor 646 as well as standard labeling protocols for use in ensemble and single-molecule cellular imaging.

View Publication Page
12/16/11 | Synthesis of rhodamines from fluoresceins using Pd-catalyzed C-N cross-coupling.
Grimm JB, Lavis LD
Organic Letters. 2011 Dec 16;13(24):6354-7. doi: 10.1021/ol202618t

A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N’-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C-N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores.

View Publication Page
02/14/18 | Synthetic and genetically encoded fluorescent neural activity indicators.
Deo C, Lavis LD
Current Opinion in Neurobiology. 2018 Feb 14;50:101-108. doi: 10.1016/j.conb.2018.01.003

The ultimate goal of neuroscience is to relate the complex activity of cells and cell-networks to behavior and cognition. This requires tools and techniques to visualize neuronal activity. Fluorescence microscopy is an ideal tool to measure activity of cells in the brain due to the high sensitivity of the technique and the growing portfolio of optical hardware and fluorescent sensors. Here, we give a chemist's perspective on the recent progress of fluorescent activity indicators that enable the measurement of cellular events in the living brain. We discuss advances in both chemical and genetically encoded sensors and look forward to hybrid indicators, which incorporate synthetic organic dyes into genetically encoded protein constructs.

View Publication Page
Card LabFlyEM
06/06/23 | Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation
Elizabeth C Marin , Billy J Morris , Tomke Stuerner , Andrew S Champion , Dominik Krzeminski , Griffin Badalamente , Marina Gkantia , Imaan F M Tamimi , Siqi Fang , Sung Soo Moon , Han S J Cheong , Feng Li , Philipp Schlegel , Stuart Berg , FlyEM Project Team , Gwyneth M Card , Marta Costa , David Shepherd , Gregory S X E Jefferis
bioRxiv. 2023 Jun 06:. doi: 10.1101/2023.06.05.543407

Our companion paper (Takemura et al., 2023) introduces the first completely proofread connectome of the nerve cord of an animal that can walk or fly. The base connectome consists of neuronal morphologies and the connections between them. However, in order to efficiently navigate and understand this connectome, it is crucial to have a system of annotations that systematically categorises and names neurons, linking them to the existing literature. In this paper we describe the comprehensive annotation of the VNC connectome, first by a system of hierarchical coarse annotations, then by grouping left-right and serially homologous neurons and eventually by defining systematic cell types for the intrinsic interneurons and sensory neurons of the VNC; descending and motor neurons are typed in (Cheong et al., 2023). We assign a sensory modality to over 5000 sensory neurons, cluster them by connectivity, and identify serially homologous cell types and a layered organisation likely corresponding to peripheral topography. We identify the developmental neuroblast of origin of the large majority of VNC neurons and confirm that (in most cases) all secondary neurons of each hemilineage express a single neurotransmitter. Neuroblast hemilineages are serially repeated along the segments of the nerve cord and generally exhibit consistent hemilineage-to-hemilineage connectivity across neuromeres, supporting the idea that hemilineages are a major organisational feature of the VNC. We also find that more than a third of individual neurons belong to serially homologous cell types, which were crucial for identifying motor neurons and sensory neurons across leg neuropils. Categorising interneurons by their neuropil innervation patterns provides an additional organisation axis. Over half of the intrinsic neurons of the VNC appear dedicated to the legs, with the majority restricted to single leg neuropils; in contrast, inhibitory interneurons connecting different leg neuropils, especially those crossing the midline, appear rarer than anticipated by standard models of locomotor circuitry. Our annotations are being released as part of the neuprint.janelia.org web application and also serve as the basis of programmatic analysis of the connectome through dedicated tools that we describe in this paper.

View Publication Page