Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

56 Publications

Showing 1-10 of 56 results
05/28/20 | Enhanced Golic+: Highly effective CRISPR gene targeting and transgene HACKing in .
Chen H, Yao X, Ren Q, Chang C, Liu L, Miyares RL, Lee T
Development. 2020 May 28:. doi: 10.1242/dev.181974

Gene targeting is an incredibly valuable technique. Sometimes however, it can also be extremely challenging for various intrinsic reasons (e.g. low target accessibility or nature/extent of gene modification). To bypass these barriers, we designed a transgene-based system in Drosophila that increases the number of independent gene targeting events while at the same time enriching for correctly targeted progeny. Unfortunately, with particularly challenging gene targeting experiments, our original design yielded numerous false positives. Here we deliver a much-improved technique named Enhanced Golic+ (E-Golic+). E-Golic+ incorporates genetic modifications to tighten lethality-based selection while simultaneously boosting efficiency. With E-Golic+, we easily achieve previously unattainable gene targeting. Additionally, we built an E-Golic+ based, high-efficiency genetic pipeline for transgene swapping. We demonstrate its utility by transforming GAL4 enhancer-trap lines into tissue-specific Cas9-expressing lines. Given the superior efficiency, specificity and scalability, E-Golic+ promises to expedite development of additional sophisticated genetic/genomic tools in .

View Publication Page
04/07/20 | Conservation and divergence of related neuronal lineages in the central brain.
Lee Y, Yang C, Miyares RL, Huang Y, He Y, Ren Q, Chen H, Kawase T, Ito M, Otsuna H, Sugino K, Aso Y, Ito K, Lee T
eLife. 2020 Apr 07;9:. doi: 10.7554/eLife.53518

Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.

View Publication Page
03/18/20 | CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila.
Chen H, Marques JG, Sugino K, Wei D, Miyares RL, Lee T
Nucleic Acids Research. 2020 Mar 18:. doi: 10.1093/nar/gkaa177

The genome is the blueprint for an organism. Interrogating the genome, especially locating critical cis-regulatory elements, requires deletion analysis. This is conventionally performed using synthetic constructs, making it cumbersome and non-physiological. Thus, we created Cas9-mediated Arrayed Mutagenesis of Individual Offspring (CAMIO) to achieve comprehensive analysis of a targeted region of native DNA. CAMIO utilizes CRISPR that is spatially restricted to generate independent deletions in the intact Drosophila genome. Controlled by recombination, a single guide RNA is stochastically chosen from a set targeting a specific DNA region. Combining two sets increases variability, leading to either indels at 1-2 target sites or inter-target deletions. Cas9 restriction to male germ cells elicits autonomous double-strand-break repair, consequently creating offspring with diverse mutations. Thus, from a single population cross, we can obtain a deletion matrix covering a large expanse of DNA at both coarse and fine resolution. We demonstrate the ease and power of CAMIO by mapping 5'UTR sequences crucial for chinmo's post-transcriptional regulation.

View Publication Page
12/01/19 | High-throughput dense reconstruction of cell lineages.
Espinosa-Medina I, Garcia-Marques J, Cepko C, Lee T
Open Biology. 2019 Dec 01;9(12):190229. doi: 10.1098/rsob.190229

The first meeting exclusively dedicated to the 'High-throughput dense reconstruction of cell lineages' took place at Janelia Research Campus (Howard Hughes Medical Institute) from 14 to 18 April 2019. Organized by Tzumin Lee, Connie Cepko, Jorge Garcia-Marques and Isabel Espinosa-Medina, this meeting echoed the recent eruption of new tools that allow the reconstruction of lineages based on the phylogenetic analysis of DNA mutations induced during development. Combined with single-cell RNA sequencing, these tools promise to solve the lineage of complex model organisms at single-cell resolution. Here, we compile the conference consensus on the technological and computational challenges emerging from the use of the new strategies, as well as potential solutions.

View Publication Page
10/23/19 | Unlimited genetic switches for cell-type-specific manipulation.
Garcia-Marques J, Yang C, Espinosa-Medina I, Mok K, Koyama M, Lee T
Neuron. 2019 Oct 23;104(2):227-38. doi: https://doi.org/10.1016/j.neuron.2019.07.005

Gaining independent genetic access to discrete cell types is critical to interrogate their biological functions as well as to deliver precise gene therapy. Transcriptomics has allowed us to profile cell populations with extraordinary precision, revealing that cell types are typically defined by a unique combination of genetic markers. Given the lack of adequate tools to target cell types based on multiple markers, most cell types remain inaccessible to genetic manipulation. Here we present CaSSA, a platform to create unlimited genetic switches based on CRISPR/Cas9 (Ca) and the DNA repair mechanism known as single-strand annealing (SSA). CaSSA allows engineering of independent genetic switches, each responding to a specific gRNA. Expressing multiple gRNAs in specific patterns enables multiplex cell-type-specific manipulations and combinatorial genetic targeting. CaSSA is a new genetic tool that conceptually works as an unlimited number of recombinases and will facilitate genetic access to cell types in diverse organisms.

View Publication Page
09/23/19 | Mamo decodes hierarchical temporal gradients into terminal neuronal fate.
Liu L, Long X, Yang C, Miyares RL, Sugino K, Singer RH, Lee T
Elife. 2019 Sep 23;8:. doi: 10.7554/eLife.48056

Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/β' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.

View Publication Page
05/30/19 | CLADES: a programmable sequence of reporters for lineage analysis
Garcia-Marques J, Yang C, Espinosa-Medina I, Koyama M, Lee T
bioRxiv. 2019 May 30:. doi: https://doi.org/10.1101/655308

We present CLADES (Cell Lineage Access Driven by an Edition Sequence), a technology for cell lineage studies based on CRISPR/Cas9. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a pre-determined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, coupling birth order with reporter expression. This gives us temporal resolution of lineage development that can be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, marking each generation with the corresponding combination of reporters. CLADES thus offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.

View Publication Page
03/26/19 | Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS.
Lacin H, Chen H, Long X, Singer RH, Lee T, Truman JW
Elife. 2019 Mar 26;8:. doi: 10.7554/eLife.43701

The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.

View Publication Page
11/27/18 | Temporal control of Drosophila central nervous system development.
Miyares RL, Lee T
Current Opinion in Neurobiology. 2018 Nov 27;56:24-32. doi: 10.1016/j.conb.2018.10.016

A complex nervous system requires precise numbers of various neuronal types produced with exquisite spatiotemporal control. This striking diversity is generated by a limited number of neural stem cells (NSC), where spatial and temporal patterning intersect. Drosophila is a genetically tractable model system that has significant advantages for studying stem cell biology and neuronal fate specification. Here we review the latest findings in the rich literature of temporal patterning of neuronal identity in the Drosophila central nervous system. Rapidly changing consecutive transcription factors expressed in NSCs specify short series of neurons with considerable differences. More slowly progressing changes are orchestrated by NSC intrinsic temporal factor gradients which integrate extrinsic signals to coordinate nervous system and organismal development.

View Publication Page
07/31/18 | High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor.
Yamashita T, Zheng F, Finkelstein D, Kellard Z, Carter R, Rosencrance CD, Sugino K, Easton J, Gawad C, Zuo J
PLoS Genetics. 2018 07;14(7):e1007552. doi: 10.1371/journal.pgen.1007552

In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion.

View Publication Page