Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4061 Publications

Showing 1-10 of 4061 results
04/09/25 | Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment.
Pentimalli TM, Schallenberg S, León-Periñán D, Legnini I, Theurillat I, Thomas G, Boltengagen A, Fritzsche S, Nimo J, Ruff L, Dernbach G, Jurmeister P, Murphy S, Gregory MT, Liang Y, Cordenonsi M, Piccolo S, Coscia F, Woehler A, Karaiskos N, Klauschen F, Rajewsky N
Cell Syst. 2025 Apr 09:101261. doi: 10.1016/j.cels.2025.101261

Tumors are complex ecosystems composed of malignant and non-malignant cells embedded in a dynamic extracellular matrix (ECM). In the tumor microenvironment, molecular phenotypes are controlled by cell-cell and ECM interactions in 3D cellular neighborhoods (CNs). While their inhibition can impede tumor progression, routine molecular tumor profiling fails to capture cellular interactions. Single-cell spatial transcriptomics (ST) maps receptor-ligand interactions but usually remains limited to 2D tissue sections and lacks ECM readouts. Here, we integrate 3D ST with ECM imaging in serial sections from one clinical lung carcinoma to systematically quantify molecular states, cell-cell interactions, and ECM remodeling in CN. Our integrative analysis pinpointed known immune escape and tumor invasion mechanisms, revealing several druggable drivers of tumor progression in the patient under study. This proof-of-principle study highlights the potential of in-depth CN profiling in routine clinical samples to inform microenvironment-directed therapies. A record of this paper's transparent peer review process is included in the supplemental information.

View Publication Page
04/08/25 | Glutamate indicators with increased sensitivity and tailored deactivation rates
Podgorski K, Aggarwal A, Negrean A, Chen Y, Iyer R, Reep D, Liu A, Palutla A, Xie M, Maclennan B, Hagihara K, Kinsey L, Sun J, Yao P, Zheng J, Tsang A, Tsegaye G, Zhang Y, Patel R, Hasseman J
Research Square. 2025 Apr 8:. doi: 10.21203/rs.3.rs-6257403/v1

Identifying the input-output operations of neurons requires measurements of synaptic transmission simultaneously at many of a neuron’s thousands of inputs in the intact brain. To facilitate this goal, we engineered and screened 3365 variants of the fluorescent protein glutamate indicator iGluSnFR3 in neuron culture, and selected variants in the mouse visual cortex. Two variants have high sensitivity, fast activation (< 2 ms) and deactivation times tailored for recording large populations of synapses (iGluSnFR4s, 153 ms) or rapid dynamics (iGluSnFR4f, 26 ms). By imaging action-potential evoked signals on axons and visually-evoked signals on dendritic spines, we show that iGluSnFR4s/4f primarily detect local synaptic glutamate with single-vesicle sensitivity. The indicators detect a wide range of naturalistic synaptic transmission, including in the vibrissal cortex layer 4 and in hippocampal CA1 dendrites. iGluSnFR4 increases the sensitivity and scale (4s) or speed (4f) of tracking information flow in neural networks in vivo.

View Publication Page
04/15/25 | Wnt/β-catenin signalling assists cell fate decision making in the early mouse embryo
Lilao-Garzón J, Corujo-Simon E, Vinyoles M, Fischer SC, Guillén J, Balayo T, Muñoz-Descalzo S
bioRxiv. 2025 Apr 15:. doi: 10.1101/2025.04.09.647220

Cell fate choice is a key event happening during preimplantation mouse development. From embryonic day 3.5 (E3.5) to E4.5, the inner cell mass (ICM) differentiates into epiblast (Epi, NANOG expressing cells) and primitive endoderm (PrE, GATA6, SOX17 and/or GATA4 expressing cells). The mechanism by which ICM cells differentiate into Epi cells and PrE cells remains partially unknown. FGF/ERK has been proposed as the main signalling pathway for this event, but it does not explain co-expression of NANOG and GAT6 or how the cell fate choice is initiated.

In this study, we investigate whether Wnt/β-catenin signalling also plays a role. To this end, we use two in vitro models based on inducible GATA6 expression: one in 2D, and another in 3D, namely ICM organoids. By combining these in vitro models with in vivo mouse embryos, chemical and classical genetics, and quantitative 3D immunofluorescence analyses, we propose a dual role for Wnt/β-catenin signalling.

We find that β-catenin, acting alongside FGF/ERK signalling, helps to guide the cell fate choice towards PrE. Additionally, by regulating GATA6 and GATA4 stability, β-catenin further facilitates this choice. To summarise, we observe that pathway activation promotes PrE differentiation, while its inhibition stalls it.

SUMMARY STATEMENT Wnt/β-catenin signalling promotes PrE fate in mouse preimplantation embryos.

View Publication Page
04/15/25 | Bio-inspired 3D-printed phantom: Encoding cellular heterogeneity for characterization of quantitative phase imaging
Sylvia Desissaire , Michał Ziemczonok , Tigrane Cantat-Moltrecht , Arkadiusz Kuś , Guillaume Godefroy , Lionel Hervé , Chiara Paviolo , Wojciech Krauze , Cédric Allier , Ondrej Mandula , Małgorzata Kujawińska
Measurement. 2025 Apr 15;247:116765. doi: 10.1016/j.measurement.2025.116765

Quantitative phase imaging (QPI) has proven to be a valuable tool for advanced biological and pharmacological research, providing phase information for the study of cell features and physiology in label-free conditions. The next step for QPI to become a gold standard is the quantitative assessment of the phase gradients over the different microscopy setups. Given the large variety of QPI systems, a systematic comparison is a challenging task, and requires a calibration target representative of the living samples. In this paper, we introduce a tailor-made 3D-printed phantom derived from phase images of eukaryotic cells. It comprises typical morphologies and optical thicknesses found in biological cultures and is characterized with digital holographic microscopy (reference measurements). The performance of three different full field QPI optical systems, in terms of optical path difference and dry mass accuracy, were evaluated. This phantom opens up other possibilities for the validation of reconstruction algorithms and post-processing routines, and paves the way for calibration targets designed ad hoc for specific biological questions.

View Publication Page
04/07/25 | Far-red fluorescent genetically encoded calcium ion indicators.
Dalangin R, Jia BZ, Qi Y, Aggarwal A, Sakoi K, Drobizhev M, Molina RS, Patel R, Abdelfattah AS, Zheng J, Reep D, Hasseman JP, GENIE Project Team , Zhao Y, Wu J, Podgorski K, Tebo AG, Schreiter ER, Hughes TE, Terai T, Paquet M, Megason SG, Cohen AE, Shen Y, Campbell RE
Nat Commun. 2025 Apr 07;16(1):3318. doi: 10.1038/s41467-025-58485-z

Genetically encoded calcium ion (Ca) indicators (GECIs) are widely-used molecular tools for functional imaging of Ca dynamics and neuronal activities with single-cell resolution. Here we report the design and development of two far-red fluorescent GECIs, FR-GECO1a and FR-GECO1c, based on the monomeric far-red fluorescent proteins mKelly1 and mKelly2. FR-GECOs have excitation and emission maxima at ~596 nm and ~644 nm, respectively, display large responses to Ca in vitro (ΔF/F = 6 for FR-GECO1a, 18 for FR-GECO1c), are bright under both one-photon and two-photon illumination, and have high affinities (apparent K = 29 nM for FR-GECO1a, 83 nM for FR-GECO1c) for Ca. FR-GECOs offer sensitive and fast detection of single action potentials in neurons, and enable in vivo all-optical manipulation and measurement of cellular activities in combination with optogenetic actuators.

Preprint: https://doi.org/10.1101/2020.11.12.380089

View Publication Page
04/04/25 | A Bayesian Model to Count the Number of Two-State Emitters in a Diffraction Limited Spot.
Hillsley A, Stein J, Tillberg PW, Stern DL, Funke J
Nano Lett. 2025 Apr 04:. doi: 10.1021/acs.nanolett.4c06304

We address the problem of inferring the number of independently blinking fluorescent light emitters, when only their combined intensity contributions can be observed. This problem occurs regularly in light microscopy of objects smaller than the diffraction limit, where one wishes to count the number of fluorescently labeled subunits. Our proposed solution directly models the photophysics of the system, as well as the blinking kinetics of the fluorescent emitters as a fully differentiable hidden Markov model, estimating a posterior distribution of the total number of emitters. We show that our model is more accurate and increases the range of countable subunits by a factor of 2 compared to current state-of-the-art methods. Furthermore, we demonstrate that our model can be used to investigate the effect of blinking kinetics on counting ability and therefore can inform optimal experimental conditions.

View Publication Page
04/04/25 | Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals.
Mi X, Chen AB, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim J, Ruetten VM, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi S, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G
Cell. 2025 Apr 04:. doi: 10.1016/j.cell.2025.03.012

Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.

Preprint: https://doi.org/10.1101/2024.05.02.592259

View Publication Page
04/02/25 | Fourier-Based 3D Multistage Transformer for Aberration Correction in Multicellular Specimens
Thayer Alshaabi , Daniel Milkie , Gaoxiang Liu , Cyna Shirazinejad , Jason Hong , Kemal Achour , Frederik Görlitz , Ana Milunovic-Jevtic , Cat Simmons , Ibrahim Abuzahriyeh , Erin Hong , Samara Williams , Nathanael Harrison , Evan Huang , Eun Bae , Alison Killilea , David Drubin , Ian Swinburne , Srigokul Upadhyayula , Eric Betzig
Research Square. 2025 Apr 02:. doi: 10.21203/rs.3.rs-6273247/v1

High-resolution tissue imaging is often compromised by sample-induced optical aberrations that degrade resolution and contrast. While wavefront sensor-based adaptive optics (AO) can measure these aberrations, such hardware solutions are typically complex, expensive to implement, and slow when serially mapping spatially varying aberrations across large fields of view. Here, we introduce AOViFT (Adaptive Optical Vision Fourier Transformer)---a machine learning-based aberration sensing framework built around a 3D multistage Vision Transformer that operates on Fourier domain embeddings. AOViFT infers aberrations and restores diffraction-limited performance in puncta-labeled specimens with substantially reduced computational cost, training time, and memory footprint compared to conventional architectures or real-space networks. We validated AOViFT on live gene-edited zebrafish embryos, demonstrating its ability to correct spatially varying aberrations using either a deformable mirror or post-acquisition deconvolution. By eliminating the need for the guide star and wavefront sensing hardware and simplifying the experimental workflow, AOViFT lowers technical barriers for high-resolution volumetric microscopy across diverse biological samples.

View Publication Page
03/28/25 | Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety.
Zhu Z, Gong R, Rodriguez V, Quach KT, Chen X, Sternson SM
Science. 2025 Mar 28;387(6741):eadt0773. doi: 10.1126/science.adt0773

Hedonic eating is defined as food consumption driven by palatability without physiological need. However, neural control of palatable food intake is poorly understood. We discovered that hedonic eating is controlled by a neural pathway from the peri-locus ceruleus to the ventral tegmental area (VTA). Using photometry-calibrated optogenetics, we found that VTA dopamine (VTA) neurons encode palatability to bidirectionally regulate hedonic food consumption. VTA neuron responsiveness was suppressed during food consumption by semaglutide, a glucagon-like peptide receptor 1 (GLP-1R) agonist used as an antiobesity drug. Mice recovered palatable food appetite and VTA neuron activity during repeated semaglutide treatment, which was reversed by consumption-triggered VTA neuron inhibition. Thus, hedonic food intake activates VTA neurons, which sustain further consumption, a mechanism that opposes appetite reduction by semaglutide.

View Publication Page
04/03/25 | Vimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM
Renganathan B, Moore AS, Yeo W, Petruncio A, Ackerman D, Weigel AV, Team TC, Pasolli HA, Xu CS, Shtengel G, Hess HF, Serpinskaya AS, Zhang HF, Lippincott-Schwartz J, Gelfand VI
Journal of Cell Biology. 2025 Apr 03;224:e202406054. doi: 10.1083/jcb.202406054

Vimentin intermediate filaments (VIFs) form complex, tightly packed networks; due to this density, traditional imaging approaches cannot discern single-filament behavior. To address this, we developed and validated a sparse vimentin-SunTag labeling strategy, enabling single-particle tracking of individual VIFs and providing a sensitive, unbiased, and quantitative method for measuring global VIF motility. Using this approach, we define the steady-state VIF motility rate, showing a constant ∼8% of VIFs undergo directed microtubule-based motion irrespective of subcellular location or local filament density. Significantly, our single-particle tracking approach revealed uncorrelated motion of individual VIFs within bundles, an observation seemingly at odds with conventional models of tightly cross-linked bundles. To address this, we acquired high-resolution focused ion beam scanning electron microscopy volumes of vitreously frozen cells and reconstructed three-dimensional VIF bundles, finding that they form only loosely organized, semi-coherent structures from which single VIFs frequently emerge to locally engage neighboring microtubules. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.

bioRxiv Preprint: https://doi.org/10.1101/2024.06.10.598346

View Publication Page