Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

47 Publications

Showing 1-10 of 47 results
11/27/18 | Temporal control of Drosophila central nervous system development.
Miyares RL, Lee T
Current Opinion in Neurobiology. 2018 Nov 27;56:24-32. doi: 10.1016/j.conb.2018.10.016

A complex nervous system requires precise numbers of various neuronal types produced with exquisite spatiotemporal control. This striking diversity is generated by a limited number of neural stem cells (NSC), where spatial and temporal patterning intersect. Drosophila is a genetically tractable model system that has significant advantages for studying stem cell biology and neuronal fate specification. Here we review the latest findings in the rich literature of temporal patterning of neuronal identity in the Drosophila central nervous system. Rapidly changing consecutive transcription factors expressed in NSCs specify short series of neurons with considerable differences. More slowly progressing changes are orchestrated by NSC intrinsic temporal factor gradients which integrate extrinsic signals to coordinate nervous system and organismal development.

View Publication Page
07/31/18 | High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor.
Yamashita T, Zheng F, Finkelstein D, Kellard Z, Carter R, Rosencrance CD, Sugino K, Easton J, Gawad C, Zuo J
PLoS Genetics. 2018 07;14(7):e1007552. doi: 10.1371/journal.pgen.1007552

In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion.

View Publication Page
05/15/18 | Lineage-guided Notch-dependent gliogenesis by multi-potent progenitors.
Ren Q, Awasaki T, Wang Y, Huang Y, Lee T
Development (Cambridge, England). 2018 May 15:. doi: 10.1242/dev.160127

Macroglial cells in the central nervous system exhibit regional specialization and carry out region-specific functions. Diverse glial cells arise from specific progenitors in specific spatiotemporal patterns. This raises an interesting possibility that there exist glial precursors with distinct developmental fates, which govern region-specific gliogenesis. Here we mapped the glial progeny produced by the type II neuroblasts, which, like vertebrate radial glia cells, yield both neurons and glia via intermediate neural progenitors (INPs). Distinct type II neuroblasts produce different characteristic sets of glia. A single INP can make both astrocyte-like and ensheathing glia, which co-occupy a relatively restrictive subdomain. Blocking apoptosis uncovers further lineage distinctions in the specification, proliferation, and survival of glial precursors. Both the switch from neurogenesis to gliogenesis and the subsequent glial expansion depend on Notch signaling. Taken together, lineage origins preconfigure the development of individual glial precursors with involvement of serial Notch actions in promoting gliogenesis.

View Publication Page
09/05/17 | Dissection of the Drosophila neuropeptide F circuit using a high-throughput two-choice assay.
Shao L, Saver M, Chung P, Ren Q, Lee T, Kent CF, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2017 Sep 05;114(38):e8091-9. doi: 10.1073/pnas.1710552114

In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.

View Publication Page
08/29/17 | Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells.
Yang C, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, Lee T
Development (Cambridge, England). 2017 Aug 29;144(19):3454-64. doi: 10.1242/dev.149500

The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a "decommissioning" phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the Mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.

View Publication Page
04/10/17 | Stem cell-intrinsic, seven-up-triggered temporal factor gradients diversify intermediate neural progenitors.
Ren Q, Yang C, Liu Z, Sugino K, Mok K, He Y, Ito M, Nern A, Otsuna H, Lee T
Current Biology : CB. 2017 Apr 10;27(9):1303-13. doi: 10.1016/j.cub.2017.03.047

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.

View Publication Page
01/23/17 | Wiring the Drosophila brain with individually tailored neural lineages.
Lee T
Current Biology : CB. 2017 Jan 23;27(2):R77-R82. doi: 10.1016/j.cub.2016.12.026

A complex brain consists of multiple intricate neural networks assembled from distinct sets of input and output neurons as well as region-specific local interneurons. Within a given anatomical set, there exist diverse neuronal types that can vary in morphology, neural physiology, and modes of neurotransmission. The genetic programs that guide specification of neuronal types during neurogenesis preconfigure the brain. This is best demonstrated in the Drosophila central brain, which is composed of ∼100 pairs of individually tailored neuronal lineages. Each neuronal lineage (the neurons/glia produced from a single stem cell) can contain multiple morphological classes of neurons that can consist of many analogous neuronal types. The detailed patterns of neuronal diversification are lineage-specific and can differ drastically even among neighboring neuronal lineages. Furthermore, the interrelationships between neuronal lineages and neural networks are complex. These phenomena underscore the importance of tracking all neuronal lineages in understanding brain development and evolution.

View Publication Page
09/08/16 | Cell class-lineage analysis reveals sexually dimorphic lineage compositions in the Drosophila brain.
Ren Q, Awasaki T, Huang Y, Liu Z, Lee T
Current Biology : CB. 2016 Sep 08;26(19):2583-93. doi: 10.1016/j.cub.2016.07.086

The morphology and physiology of neurons are directed by developmental decisions made within their lines of descent from single stem cells. Distinct stem cells may produce neurons having shared properties that define their cell class, such as the type of secreted neurotransmitter. The relationship between cell class and lineage is complex. Here we developed the transgenic cell class-lineage intersection (CLIn) system to assign cells of a particular class to specific lineages within the Drosophila brain. CLIn also enables birth-order analysis and genetic manipulation of particular cell classes arising from particular lineages. We demonstrated the power of CLIn in the context of the eight central brain type II lineages, which produce highly diverse progeny through intermediate neural progenitors. We mapped 18 dopaminergic neurons from three distinct clusters to six type II lineages that show lineage-characteristic neurite trajectories. In addition, morphologically distinct dopaminergic neurons are produced within a given lineage, and they arise in an invariant sequence. We also identified type II lineages that produce doublesex- and fruitless-expressing neurons and examined whether female-specific apoptosis in these lineages accounts for the lower number of these neurons in the female brain. Blocking apoptosis in these lineages resulted in more cells in both sexes with males still carrying more cells than females. This argues that sex-specific stem cell fate together with differential progeny apoptosis contribute to the final sexual dimorphism.

View Publication Page
02/01/16 | Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting.
Yang C, Fu C, Sugino K, Liu Z, Ren Q, Liu L, Yao X, Lee LP, Lee T
Development (Cambridge, England). 2016 Feb 1;143(3):411-21. doi: 10.1242/dev.129163

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.

View Publication Page
10/16/15 | Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates.
Liu Z, Yang C, Sugino K, Fu C, Liu L, Yao X, Lee LP, Lee T
Science (New York, N.Y.). 2015 Oct 16;350(6258):317-20. doi: 10.1126/science.aad1886

Neural stem cells show age-dependent developmental potentials, as evidenced by their production of distinct neuron types at different developmental times. Drosophila neuroblasts produce long, stereotyped lineages of neurons. We searched for factors that could regulate neural temporal fate by RNA-sequencing lineage-specific neuroblasts at various developmental times. We found that two RNA-binding proteins, IGF-II mRNA-binding protein (Imp) and Syncrip (Syp), display opposing high-to-low and low-to-high temporal gradients with lineage-specific temporal dynamics. Imp and Syp promote early and late fates, respectively, in both a slowly progressing and a rapidly changing lineage. Imp and Syp control neuronal fates in the mushroom body lineages by regulating the temporal transcription factor Chinmo translation. Together, the opposing Imp/Syp gradients encode stem cell age, specifying multiple cell fates within a lineage.

View Publication Page