Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

13 Publications

Showing 1-10 of 13 results
Your Criteria:
    03/15/24 | Social state gates vision using three circuit mechanisms in Drosophila
    Catherine E. Schretter , Tom Hindmarsh Sten , Nathan Klapoetke , Mei Shao , Aljoscha Nern , Marisa Dreher , Daniel Bushey , Alice A. Robie , Adam L. Taylor , Kristin M. Branson , Adriane Otopalik , Vanessa Ruta , Gerald M. Rubin
    bioRxiv. 2024 Mar 15:. doi: 10.1101/2024.03.15.585289

    Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well-studied. Yet, much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviors, flies need to focus on nearby flies. Here, we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identified three state-dependent circuit motifs poised to selectively amplify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioral and neurophysiological analyses, we show that each of these circuit motifs function during female aggression. We reveal that features of this same switch operate in males during courtship pursuit, suggesting that disparate social behaviors may share circuit mechanisms. Our work provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    10/07/22 | Sexual arousal gates visual processing during Drosophila courtship
    Hindmarsh Sten T, Li R, Otopalik A, Ruta V
    Nature. 2022 Oct 7;595(7868):549 - 553. doi: 10.1038/s41586-021-03714-w

    Long-lasting internal arousal states motivate and pattern ongoing behaviour, enabling the temporary emergence of innate behavioural programs that serve the needs of an animal, such as fighting, feeding, and mating. However, how internal states shape sensory processing or behaviour remains unclear. In Drosophila, male flies perform a lengthy and elaborate courtship ritual that is triggered by the activation of sexually dimorphic P1 neurons1,2,3,4,5, during which they faithfully follow and sing to a female6,7. Here, by recording from males as they court a virtual ‘female’, we gain insight into how the salience of visual cues is transformed by a male’s internal arousal state to give rise to persistent courtship pursuit. The gain of LC10a visual projection neurons is selectively increased during courtship, enhancing their sensitivity to moving targets. A concise network model indicates that visual signalling through the LC10a circuit, once amplified by P1-mediated arousal, almost fully specifies a male’s tracking of a female. Furthermore, P1 neuron activity correlates with ongoing fluctuations in the intensity of a male’s pursuit to continuously tune the gain of the LC10a pathway. Together, these results reveal how a male’s internal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.

    View Publication Page
    02/12/21 | Molecular profiling of single neurons of known identity in two ganglia from the crab <i>Cancer borealis</i>
    Northcutt AJ, Kick DR, Otopalik AG, Goetz BM, Harris RM, Santin JM, Hofmann HA, Marder E, Schulz DJ
    Proceedings of the National Academy of Sciences. 2021 Feb 12;116(52):26980 - 26990. doi: 10.1073/pnas.1911413116

    Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.

    View Publication Page
    08/31/20 | An arousal-gated visual circuit controls pursuit during Drosophila courtship
    Tom Hindmarsh Sten , Rufei Li , Adriane Otopalik , Vanessa Ruta
    bioRxiv. 2020 Aug 31:. doi: 10.1101/2020.08.31.275883

    Long-lasting internal states, like hunger, aggression, and sexual arousal, pattern ongoing behavior by defining how the sensory world is translated to specific actions that subserve the needs of an animal. Yet how enduring internal states shape sensory processing or behavior has remained unclear. In Drosophila, male flies will perform a lengthy and elaborate courtship ritual, triggered by activation of sexually-dimorphic P1 neurons, in which they faithfully follow and sing to a female. Here, by recording from males as they actively court a fictive ‘female’ in a virtual environment, we gain insight into how the salience of female visual cues is transformed by a male’s internal arousal state to give rise to persistent courtship pursuit. We reveal that the gain of LCt0a visual projection neurons is strongly increased during courtship, enhancing their sensitivity to moving targets. A simple network model based on the LCt0a circuit accurately predicts a male’s tracking of a female over hundreds of seconds, underscoring that LCt0a visual signals, once released by P1-mediated arousal, become coupled to motor pathways to deterministically control his visual pursuit. Furthermore, we find that P1 neuron activity correlates with fluctuations in the intensity of a male’s pursuit, and that their acute activation is sufficient to boost the gain of the LCt0 pathways. Together, these results reveal how alterations in a male’s internal arousal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    07/02/19 | Molecular Profiling to Infer Neuronal Cell Identity: Lessons from small ganglia of the Crab Cancer borealis
    Adam J. Northcutt , Daniel R. Kick , Adriane G. Otopalik , Benjamin M. Goetz , Rayna M. Harris , Joseph M. Santin , Hans A. Hofmann , Eve Marder , David J. Schulz
    bioRxiv. 2019 Jul 2:. doi: 10.1101/690388

    Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: if cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell type classification, we performed two forms of transcriptional profiling – RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from two small crustacean networks: the stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally-defined neuron types can be classified by expression profile alone. Our results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post-hoc grouping so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between two or more cell types. Therefore, our study supports the general utility of cell identification by transcriptional profiling, but adds a caution: it is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology or innervation target can neuronal identity be unambiguously determined.SIGNIFICANCE STATEMENT Single cell transcriptional profiling has become a widespread tool in cell identification, particularly in the nervous system, based on the notion that genomic information determines cell identity. However, many cell type classification studies are unconstrained by other cellular attributes (e.g., morphology, physiology). Here, we systematically test how accurately transcriptional profiling can assign cell identity to well-studied anatomically- and functionally-identified neurons in two small neuronal networks. While these neurons clearly possess distinct patterns of gene expression across cell types, their expression profiles are not sufficient to unambiguously confirm their identity. We suggest that true cell identity can only be determined by combining gene expression data with other cellular attributes such as innervation pattern, morphology, or physiology.

    View Publication Page
    03/19/19 | Innexin expression in electrically coupled motor circuits
    Adriane G. Otopalik , Brian Lane , David J. Schulz , Eve Marder
    Neuroscience Letters. 2019 Mar 16;695:19-24. doi: https://doi.org/10.1016/j.neulet.2017.07.016

    The many roles of innexins, the molecules that form gap junctions in invertebrates, have been explored in numerous species. Here, we present a summary of innexin expression and function in two small, central pattern generating circuits found in crustaceans: the stomatogastric ganglion and the cardiac ganglion. The two ganglia express multiple innexin genes, exhibit varying combinations of symmetrical and rectifying gap junctions, as well as gap junctions within and across different cell types. Past studies have revealed correlations in ion channel and innexin expression in coupled neurons, as well as intriguing functional relationships between ion channel conductances and electrical coupling. Together, these studies suggest a putative role for innexins in correlating activity between coupled neurons at the levels of gene expression and physiological activity during development and in the adult animal.

    View Publication Page
    01/19/19 | Neuronal morphologies built for reliable physiology in a rhythmic motor circuit
    Otopalik AG, Pipkin J, Marder E, Slutsky I, Calabrese RL
    eLife. 2019 Jan 19;8:e41728. doi: 10.7554/eLife.41728

    It is often assumed that highly-branched neuronal structures perform compartmentalized computations. However, previously we showed that the Gastric Mill (GM) neuron in the crustacean stomatogastric ganglion (STG) operates like a single electrotonic compartment, despite having thousands of branch points and total cable length >10 mm (Otopalik et al., 2017a; 2017b). Here we show that compact electrotonic architecture is generalizable to other STG neuron types, and that these neurons present direction-insensitive, linear voltage integration, suggesting they pool synaptic inputs across their neuronal structures. We also show, using simulations of 720 cable models spanning a broad range of geometries and passive properties, that compact electrotonus, linear integration, and directional insensitivity in STG neurons arise from their neurite geometries (diameters tapering from 10-20 µm to \uline< 2 µm at their terminal tips). A broad parameter search reveals multiple morphological and biophysical solutions for achieving different degrees of passive electrotonic decrement and computational strategies in the absence of active properties.

    View Publication Page
    02/10/17 | Single-Neuron Gene Expression Analysis Using the Maxwell® 16 LEV System in the Neural Systems and Behavior Course
    Rayna M. Harris , Adriane G. Otopalik , Colin J. Smith , Dirk Bucher , Jorge Golowasch , Hans A. Hofmann
    bioRxiv. 2017 Feb 10:. doi: 10.1101/107342

    Gene expression analysis from single cells has become increasingly prominent across biological disciplines; thus, it is important to train students in these approaches. Here, we present an experimental and analysis pipeline that we developed for the Neural Systems & Behavior (NS&B) course at Marine Biological Laboratory. Our approach used the Maxwell® 16 LEV simplyRNA Tissue Kit and GoTaq® 2-Step RT-qPCR System for gene expression analysis from single neurons of the crustacean stomatogastric ganglion, a model system to study the generation of rhythmic motor patterns. We used double-stranded RNA to knockdown expression of a putative neuromodulator-activated sodium channel. We then examined the electrophysiological responses to known neuromodulators and confirmed that the response was reduced. Finally, we measured how mRNA levels of several ion channel genes changed in response. Our results provide new insights into the neural mechanisms underlying the generation and modulation of rhythmic motor patterns.

    View Publication Page
    02/08/17 | Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion
    Otopalik AG, Goeritz ML, Sutton AC, Brookings T, Guerini C, Marder E, Calabrese RL
    eLife. 2017 Feb 8;6:e22352. doi: 10.7554/eLife.22352

    Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab \textitCancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring.

    View Publication Page
    02/06/17 | When complex neuronal structures may not matter
    Otopalik AG, Sutton AC, Banghart M, Marder E, Raman IM
    eLife. 2017 Feb 6;6:e23508. doi: 10.7554/eLife.23508

    Much work has explored animal-to-animal variability and compensation in ion channel expression. Yet, little is known regarding the physiological consequences of morphological variability. We quantify animal-to-animal variability in cable lengths (CV = 0.4) and branching patterns in the Gastric Mill (GM) neuron, an identified neuron type with highly-conserved physiological properties in the crustacean stomatogastric ganglion (STG) of \textitCancer borealis. We examined passive GM electrotonic structure by measuring the amplitudes and apparent reversal potentials (E\textsubscriptrevs) of inhibitory responses evoked with focal glutamate photo-uncaging in the presence of TTX. Apparent E\textsubscriptrevs were relatively invariant across sites (mean CV ± SD = 0.04 ± 0.01; 7–20 sites in each of 10 neurons), which ranged between 100–800 µm from the somatic recording site. Thus, GM neurons are remarkably electrotonically compact (estimated λ > 1.5 mm). Electrotonically compact structures, in consort with graded transmission, provide an elegant solution to observed morphological variability in the STG.

    View Publication Page