Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4079 Publications

Showing 2801-2810 of 4079 results
07/22/10 | Phenotypic robustness conferred by apparently redundant transcriptional enhancers.
Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL
Nature. 2010 Jul 22;466(7305):490-3. doi: 10.1038/nature09158

Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or ’shadow’, enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.

View Publication Page
03/15/08 | Phenylglycine and phenylalanine derivatives as potent and selective HDAC1 inhibitors (SHI-1).
Wilson KJ, Witter DJ, Grimm JB, Siliphaivanh P, Otte KM, Kral AM, Fleming JC, Harsch A, Hamill JE, Cruz JC, Chenard M, Szewczak AA, Middleton RE, Hughes BL, Dahlberg WK, Secrist JP, Miller TA
Bioorganic & Medicinal Chemistry Letters. 2008 Mar 15;18(6):1859-63. doi: 10.1016/j.bmcl.2008.02.012

An HTS screening campaign identified a series of low molecular weight phenols that showed excellent selectivity (>100-fold) for HDAC1/HDAC2 over other Class I and Class II HDACs. Evolution and optimization of this HTS hit series provided HDAC1-selective (SHI-1) compounds with excellent anti-proliferative activity and improved physical properties. Dose-dependent efficacy in a mouse HCT116 xenograft model was demonstrated with a phenylglycine SHI-1 analog.

View Publication Page
Riddiford Lab
09/10/81 | Pheromone binding and inactivation by moth antennae.
Vogt RG, Riddiford LM
Nature. 1981 Sep 10-16;293(5828):161-3

The antennae of male silk moths are extremely sensitive to the female sex pheromone such that a male moth can find a female up to 4.5 km away. This remarkable sensitivity is due to both the morphological and biochemical design of these antennae. Along the branches of the plumose antennae are the sensilla trichodea, each consisting of a hollow cuticular hair containing two unbranched dendrites bathed in a fluid, the receptor lymph ,3. The dendrites and receptor lymph are isolated from the haemolymph by a barrier of epidermal cells which secreted the cuticular hair. Pheromone molecules are thought to diffuse down 100 A-wide pore tubules through the cuticular wall and across the receptor lymph space to receptors located in the dendritic membrane. To prevent the accumulation of residual stimulant and hence sensory adaptation, the pheromone molecules are subsequently inactivated in an apparent two-step process of rapid ’early inactivation’ followed by much slower enzymatic degradation. The biochemistry involved in this sequence of events is largely unknown. We report here the identification of three proteins which interact with the pheromone of the wild silk moth Antheraea polyphemus: a pheromone-binding protein and a pheromone-degrading esterase, both uniquely located in the pheromone-sensitive sensilla; and a second esterase common to all cuticular tissues except the sensilla.

View Publication Page
Eddy/Rivas Lab
12/07/11 | Phosphorylation at the interface.
Davis FP
Structure . 2011 Dec 7;19:1726-7. doi: 10.1016/j.str.2011.11.006

Proteomic studies have identified thousands of eukaryotic phosphorylation sites (phosphosites), but few are functionally characterized. Nishi et al., in this issue of Structure, characterize phosphosites at protein-protein interfaces and estimate the effect of their phosphorylation on interaction affinity, by combining proteomics data with protein structures.

View Publication Page
Magee Lab
06/15/02 | Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons.
Gasparini S, Magee JC
The Journal of Physiology. 2002 Jun 15;541(Pt 3):665-72. doi: 10.1002/cbic.201000254

{At distal dendritic locations, the threshold for action potential generation is higher and the amplitude of back-propagating spikes is decreased. To study whether these characteristics depend upon Na+ channels, their voltage-dependent properties at proximal and distal dendritic locations were compared in CA1 hippocampal neurons. Distal Na+ channels activated at more hyperpolarized voltages than proximal (half-activation voltages were -20.4 +/- 2.4 mV vs. -12.0 +/- 1.7 mV for distal and proximal patches, respectively

View Publication Page
03/26/18 | Photoactivatable drugs for nicotinic optopharmacology.
Banala S, Arvin MC, Bannon NM, Jin X, Macklin JJ, Wang Y, Peng C, Zhao G, Marshall JJ, Gee KR, Wokosin DL, Kim VJ, McIntosh JM, Contractor A, Lester HA, Kozorovitskiy Y, Drenan RM, Lavis LD
Nature Methods. 2018 Mar 26;15(5):347-50. doi: 10.1038/nmeth.4637

Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.

View Publication Page
12/01/08 | Photoactivated localization microscopy (PALM) of adhesion complexes. (With commentary)
Shroff H, White H, Betzig E
Current Protocols in Cell Biology. 2008 Dec;Chapter 4(Unit 4):21. doi: 10.1002/0471143030.cb0421s41

Key to understanding a protein’s biological function is the accurate determination of its spatial distribution inside a cell. Although fluorescent protein markers allow the targeting of specific proteins with molecular precision, much of this information is lost when the resultant fusion proteins are imaged with conventional, diffraction-limited optics. In response, several imaging modalities that are capable of resolution below the diffraction limit (approximately 200 nm) have emerged. Here, both single- and dual-color superresolution imaging of biological structures using photoactivated localization microscopy (PALM) are described. The examples discussed focus on adhesion complexes: dense, protein-filled assemblies that form at the interface between cells and their substrata. A particular emphasis is placed on the instrumentation and photoactivatable fluorescent protein (PA-FP) tags necessary to achieve PALM images at approximately 20 nm resolution in 5 to 30 min in fixed cells.

Commentary: A paper spearheaded by Hari which gives a thorough description of the methods and hardware needed to successfully practice PALM, including cover slip preparation, cell transfection and fixation, drift correction with fiducials, characterization of on/off contrast ratios for different photoactivted fluorescent proteins, identifying PALM-suitable cells, and mechanical and optical components of a PALM system.

View Publication Page
01/01/15 | Photocontrollable fluorescent proteins for superresolution imaging.
Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV
Annual review of biophysics. 2014;43:303-29. doi: 10.1146/annurev-biophys-051013-022836

Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization-based and nonlinear ensemble-based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine.

View Publication Page
11/08/14 | Photohighlighting approaches to access membrane dynamics of the Golgi apparatus.
Sengupta P, Lippincott-Schwartz J
Methods in cell biology. 2013;118:217-34. doi: 10.1016/B978-0-12-417164-0.00013-6

By providing quantitative, visual data of live cells, fluorescent protein-based microscopy techniques are furnishing novel insights into the complexities of membrane trafficking pathways and organelle dynamics. In this chapter, we describe experimental protocols employing fluorescent protein-based photohighlighting techniques to quantify protein movement into and out of the Golgi apparatus, an organelle that serves as the central sorting and processing station of the secretory pathway. The methods allow kinetic characteristics of Golgi-associated protein trafficking to be deciphered, which can help clarify how the Golgi maintains itself as a steady-state structure despite a continuous flux of secretory cargo passing into and out of this organelle. The guidelines presented in this chapter can also be applied to examine the dynamics of other intracellular organelle systems, elucidating mechanisms for how proteins are maintained in specific organelles and/or circulated to other destinations within the cell.

View Publication Page
Fitzgerald Lab
01/08/13 | Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing.
Wilt BA, Fitzgerald JE, Schnitzer MJ
Biophysical journal. 2013 Jan 08;104(1):51-62. doi: 10.1016/j.bpj.2012.07.058

Optical approaches for tracking neural dynamics are of widespread interest, but a theoretical framework quantifying the physical limits of these techniques has been lacking. We formulate such a framework by using signal detection and estimation theory to obtain physical bounds on the detection of neural spikes and the estimation of their occurrence times as set by photon counting statistics (shot noise). These bounds are succinctly expressed via a discriminability index that depends on the kinetics of the optical indicator and the relative fluxes of signal and background photons. This approach facilitates quantitative evaluations of different indicators, detector technologies, and data analyses. Our treatment also provides optimal filtering techniques for optical detection of spikes. We compare various types of Ca(2+) indicators and show that background photons are a chief impediment to voltage sensing. Thus, voltage indicators that change color in response to membrane depolarization may offer a key advantage over those that change intensity. We also examine fluorescence resonance energy transfer indicators and identify the regimes in which the widely used ratiometric analysis of signals is substantially suboptimal. Overall, by showing how different optical factors interact to affect signal quality, our treatment offers a valuable guide to experimental design and provides measures of confidence to assess optically extracted traces of neural activity.

View Publication Page