Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Looger Lab / Publications
general_search_page-panel_pane_1 | views_panes

13 Publications

Showing 11-13 of 13 results
Your Criteria:
    Looger Lab
    02/01/12 | Genetically encoded neural activity indicators.
    Looger LL, Griesbeck O
    Current Opinion in Neurobiology. 2012 Feb;22(1):18-23. doi: 10.1016/j.conb.2011.10.024

    Recording activity from identified populations of neurons is a central goal of neuroscience. Changes in membrane depolarization, particularly action potentials, are the most important features of neural physiology to extract, although ions, neurotransmitters, neuromodulators, second messengers, and the activation state of specific proteins are also crucial. Modern fluorescence microscopy provides the basis for such activity mapping, through multi-photon imaging and other optical schemes. Probes remain the rate-limiting step for progress in this field: they should be bright and photostable, and ideally come in multiple colors. Only protein-based reagents permit chronic imaging from genetically specified cells. Here we review recent progress in the design, optimization and deployment of genetically encoded indicators for calcium ions (a proxy for action potentials), membrane potential, and neurotransmitters. We highlight seminal experiments, and present an outlook for future progress.

    View Publication Page
    Looger LabSchreiter Lab
    01/01/12 | Neural activity imaging with genetically encoded calcium indicators.
    Tian L, Akerboom J, Schreiter ER, Looger LL
    Progress in Brain Research. 2012;196:79-94. doi: 10.1016/B978-0-444-59426-6.00005-7

    Genetically encoded calcium indicators (GECIs), together with modern microscopy, allow repeated activity measurement, in real time and with cellular resolution, of defined cellular populations. Recent efforts in protein engineering have yielded several high-quality GECIs that facilitate new applications in neuroscience. Here, we summarize recent progress in GECI design, optimization, and characterization, and provide guidelines for selecting the appropriate GECI for a given biological application. We focus on the unique challenges associated with imaging in behaving animals.

    View Publication Page
    Looger Lab
    01/01/12 | Running in reverse: rhodopsins sense voltage.
    Looger LL
    Nature Methods. 2012 Jan;9(1):43-4. doi: 10.1038/nmeth.1817