Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Stern Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

150 Publications

Showing 81-90 of 150 results
03/01/10 | Comprehensive survey of developmental genes in the pea aphid, Acyrthosiphon pisum: frequent lineage-specific duplications and losses of developmental genes.
Shigenobu S, Bickel RD, Brisson JA, Butts T, Chang C, Christiaens O, Davis GK, Duncan EJ, Ferrier DE, Iga M, Janssen R, Lin G, Lu H, McGregor AP, Miura T, Smagghe G, Smith JM, van der Zee M, Velarde RA, Wilson MJ, Dearden PK, Stern DL
Insect Molecular Biology. 2010 Mar;19 Suppl 2:47-62. doi: 10.1111/j.1365-2583.2009.00944.x

Aphids exhibit unique attributes, such as polyphenisms and specialized cells to house endosymbionts, that make them an interesting system for studies at the interface of ecology, evolution and development. Here we present a comprehensive characterization of the developmental genes in the pea aphid, Acyrthosiphon pisum, and compare our results to other sequenced insects. We investigated genes involved in fundamental developmental processes such as establishment of the body plan and organogenesis, focusing on transcription factors and components of signalling pathways. We found that most developmental genes were well conserved in the pea aphid, although many lineage-specific gene duplications and gene losses have occurred in several gene families. In particular, genetic components of transforming growth factor beta (TGFbeta) Wnt, JAK/STAT (Janus kinase/signal transducer and activator of transcription) and EGF (Epidermal Growth Factor) pathways appear to have been significantly modified in the pea aphid.

View Publication Page

For too long, efforts to synthesize evolution and development have failed to build a united view of the origins and evolution of biological diversity. In this groundbreaking book, David Stern sets out to draw evolutionary biology and developmental biology together by cutting through the differences that divide the disciplines and by revealing their deeper similarities. He draws upon the insights of generations of evolutionary biologists and scores of developmental biologists to build a solid foundation for future investigation of the genetic and developmental causes of diversity. Along the way, and in plain English, he explicates many of the guiding principles of evolution, population genetics, and developmental biology. Each chapter offers a clear review of fundamental principles, together with thoughtprovoking ideas that will be tested only with data emerging from current and future studies. With the basic principles established, he then offers a new way of thinking about development—backwards—to clarify precisely how the mechanisms of development influence evolution. In the same spirit, he takes a fresh look at evolution in populations, arguing that population history influences precisely how developmental mechanisms evolve. Both Stern's new perspective on development and his reassessment of the role of populations leads to the surprising conclusion that the evolution of genomes appears to be predictable. Stern argues that developmental biology and evolutionary biology are intertwined: it is impossible to understand one of them fully without understanding the other. This book provides a clear and wide-ranging introduction to evolution and development for the basic reader; graduate students will be introduced to the cutting-edge of research in evolutionary developmental biology; and experts in evolution or development will receive both an uncomplicated introduction to the other discipline and an abundance of new, provocative ideas.

Stern, David L. Evolution, Development, and the Predictable Genome. Austin, TX: Roberts and Company Publishers, 2010.

View Publication Page
02/01/10 | Genome sequence of the pea aphid Acyrthosiphon pisum.
PLoS Biology. 2010 Feb;8(2):e1000313. doi: 10.1371/journal.pbio.1000313

Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

View Publication Page
01/07/10 | A patterning difference underlying viviparous and oviparous development in the pea aphid
R Bickel , N Belletier , H Cleveland , DL Stern , G Davis
Society for Integrative and Comparative Biology. 01/2010;50:E205-E205

The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the case of the reproductive polyphenism, differences in day length determine whether mothers will produce daughters that reproduce either sexually by laying fertilized eggs (oviparous sexual reproduction), or asexually by allowing oocytes to complete embryogenesis within the mother without fertilization (viviparous parthenogenesis). Oocytes and embryos that are produced asexually and develop within the mother develop more rapidly, are yolk-free, and much smaller than oocytes and embryos that are produced sexually. These overt differences suggest that there may be underlying differences in the molecular mechanisms of pattern formation. Indeed, our preliminary comparative gene expression work suggests that there are important differences in the terminal patterning system, involving the Torso pathway, between viviparous and oviparous development. We have so far examined the expression of homologs of torso-like and capicua, members of the Drosophila Torso pathway. We have detected clear differential expression of torso-like and possible differential expression of capicua. Establishing such differences in the expression of patterning genes between these developmental modes is a first step toward understanding how a single genome manages to direct patterning events in such different embryological contexts.

View Publication Page
01/01/10 | Michael Akam and the rise of evolutionary developmental biology.
Stern DL, Dawes-Hoang RE
The International Journal of Developmental Biology. 2010;54(4):561-5. doi: 10.1387/ijdb.092908ds

Michael Akam has been awarded the 2007 Kowalevsky medal for his many research accomplishments in the area of evolutionary developmental biology. We highlight three tributaries of Michaels contribution to evolutionary developmental biology. First, he has made major contributions to our understanding of development of the fruit fly, Drosophila melanogaster. Second, he has maintained a consistent focus on several key problems in evolutionary developmental biology, including the evolving role of Hox genes in arthropods and, more recently, the evolution of segmentation mechanisms. Third, Michael has written a series of influential reviews that have integrated progress in developmental biology into an evolutionary perspective. Michael has also made a large impact on the field through his effective mentorship style, his selfless promotion of younger colleagues, and his leadership of the University Museum of Zoology at Cambridge and the European community of evolutionary developmental biologists.

View Publication Page
12/11/09 | Evolution of the tan locus contributed to pigment loss in Drosophila santomea: a response to Matute et al.
Rebeiz M, Ramos-Womack M, Jeong S, Andolfatto P, Werner T, True J, Stern DL, Carroll SB
Cell. 2009 Dec 11;139(6):1189-96. doi: 10.1016/j.cell.2009.11.004

We have shown previously that the loss of abdominal pigmentation in D. santomea relative to its sister species D. yakuba resulted, in part, from cis-regulatory mutations at the tan locus. Matute et al. claim, based solely upon extrapolation from genetic crosses of D. santomea and D. melanogaster, a much more divergent species, that at least four X chromosome regions but not tan are responsible for pigmentation differences. Here, we provide additional evidence from introgressions of D. yakuba genes into D. santomea that support a causative role for tan in the loss of pigmentation and present analyses that contradict Matute et al.’s claims. We discuss how the choice of parental species and other factors affect the ability to identify loci responsible for species divergence, and we affirm that all of our previously reported results and conclusions stand.

View Publication Page
05/26/09 | Similar patterns of linkage disequilibrium and nucleotide diversity in native and introduced populations of the pea aphid, Acyrthosiphon pisum.
Brisson JA, Nuzhdin SV, Stern DL
BMC Genetics. 2009 May 26;10:22. doi: 10.1186/1471-2156-10-22

The pea aphid, Acyrthosiphon pisum, is an emerging genomic model system for studies of polyphenisms, bacterial symbioses, host-plant specialization, and the vectoring of plant viruses. Here we provide estimates of nucleotide diversity and linkage disequilibrium (LD) in native (European) and introduced (United States) populations of the pea aphid. Because introductions can cause population bottlenecks, we hypothesized that U.S. populations harbor lower levels of nucleotide diversity and higher levels of LD than native populations.

View Publication Page
02/06/09 | Is genetic evolution predictable?
Stern DL, Orgogozo V
Science. 2009 Feb 6;323:746-51. doi: 10.1126/science.1158997

Ever since the integration of Mendelian genetics into evolutionary biology in the early 20th century, evolutionary geneticists have for the most part treated genes and mutations as generic entities. However, recent observations indicate that all genes are not equal in the eyes of evolution. Evolutionarily relevant mutations tend to accumulate in hotspot genes and at specific positions within genes. Genetic evolution is constrained by gene function, the structure of genetic networks, and population biology. The genetic basis of evolution may be predictable to some extent, and further understanding of this predictability requires incorporation of the specific functions and characteristics of genes into evolutionary theory.

View Publication Page
01/02/09 | Molecular Basis of Facultative Asexuality in Aphids
DG Srinivasan , L Ano , GK Davis , DL Stern
Society for Integrative and Comparative Biology. 01/2009;49:E308-E308

Phenotypic plasticity allows organisms to quickly adapt in response to changing environments. Little is known of the genetic, environmental and epigenetic contribution to the expression of alternative adaptive developmental outcomes. We study aphid polyphenisms, which offer a unique, compelling opportunity to study multiple levels of biological organization, especially insect epigenetics. The pea aphid, Acyrthosiphon pisum, exhibits an adaptive reproductive polyphenism whereby genetically identical individuals reproduce either sexually (meiosis) or asexually (parthenogenesis) depending on environmental conditions during maternal development (short or long photoperiod, respectively). To understand how facultative asexuality evolved in aphids, we first determined meiosis gene activity in sexuals and asexuals. I determined that the pea aphid genome encodes single copies of homologs for the majority of the core meiotic machinery, suggesting that meiotic plasticity is not due simply to gene loss or expansion. Next, we determined if these core meiosis genes are expressed using PCR spanning across at least one intron from cDNA isolated from asexual and sexual ovaries. Surprisingly, meiosis specific genes (e.g., Spo11, Msh4, Msh5, Hop2 and Mnd1) are expressed in not only in asexual ovaries but also in somatic tissue and an obligately asexual aphid strain. Interestingly, the Spo11 PCR product contained intronic sequence, thus representing unspliced mRNA. Germline expression of Spo11, Mnd1 and Hop2 was confirmed by in situ analysis. Preliminary results identified candidate methylation sites in the Spo11 locus, indicating an epigenetic basis for this expression difference. Further characterization will help us better understand the molecular and epigenetic mechanisms underlying this adaptive facultative plasticity.

View Publication Page