Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Xu Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4079 Publications

Showing 1851-1860 of 4079 results
Looger Lab
10/18/12 | Imaging neural activity using Thy1-GCaMP transgenic mice.
Chen Q, Cichon J, Wang W, Qiu L, Lee SR, Campbell NR, DeStefino N, Fu Z, Yasuda R, Looger LL, Arenkiel BR, Gan W, Feng G
Neuron. 2012 Oct 18;76(2):297-308. doi: 10.1016/j.neuron.2012.07.011

The ability to chronically monitor neuronal activity in the living brain is essential for understanding the organization and function of the nervous system. The genetically encoded green fluorescent protein based calcium sensor GCaMP provides a powerful tool for detecting calcium transients in neuronal somata, processes, and synapses that are triggered by neuronal activities. Here we report the generation and characterization of transgenic mice that express improved GCaMPs in various neuronal subpopulations under the control of the Thy1 promoter. In vitro and in vivo studies show that calcium transients induced by spontaneous and stimulus-evoked neuronal activities can be readily detected at the level of individual cells and synapses in acute brain slices, as well as in awake behaving animals. These GCaMP transgenic mice allow investigation of activity patterns in defined neuronal populations in the living brain, and will greatly facilitate dissecting complex structural and functional relationships of neural networks.

View Publication Page
Looger Lab
06/01/12 | Imaging neural activity with genetically encoded calcium indicator.
Tian L, Hires A, Looger LL
Cold Spring Harbor Protocols. 2012 Jun 1;2012(6):647-56

Genetically encoded calcium indicators (GECIs), which are based on chimeric fluorescent proteins, can be used to monitor calcium transients in living cells and organisms. Because they are encoded by DNA, GECIs can be delivered to the intact brain noninvasively and targeted to defined populations of neurons and specific subcellular compartments for long-term, repeated measurements in vivo. GECIs have improved iteratively and are becoming useful for imaging neural activity in vivo. Here we summarize extrinsic and intrinsic factors that influence a GECI's performance and provides guidelines for selecting the appropriate GECI for a given application. We also review recent progress in GECI design, optimization, and standardized testing protocols.

View Publication Page
Magee Lab
11/06/13 | Imaging neuronal populations in behaving rodents: paradigms for studying neural circuits underlying behavior in the mammalian cortex.
Chen JL, Andermann ML, Keck T, Xu N, Ziv Y
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 2013 Nov 6;33(45):17631-40. doi: 10.1523/JNEUROSCI.3255-13.2013

Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents.

View Publication Page
05/19/25 | Imaging neuronal voltage beyond the scattering limit
Tsai-Wen Chen , Xian-Bin Huang , Sarah E. Plutkis , Katie L. Holland , Luke D. Lavis , Bei-Jung Lin
Nat Methods. 2025 May 19:. doi: 10.1038/s41592-025-02692-5

Voltage imaging is a promising technique for high-speed recording of neuronal population activity. However, tissue scattering severely limits its application in dense neuronal populations. Here, we adopted the principle of localization microscopy, a technique that enables super-resolution imaging of single-molecules, to resolve dense neuronal activities in vivo. Leveraging the sparse activation of neurons during action potentials (APs), we precisely localize the fluorescence change associated with each AP, creating a super-resolution image of neuronal activities. This approach, termed Activity Localization Imaging (ALI), identifies overlapping neurons and separates their activities with over 10-fold greater precision than what tissue scattering permits. Using ALI, we simultaneously recorded over a hundred densely-labeled CA1 neurons, creating a map of hippocampal theta oscillation at single-cell and single-cycle resolution.

 

Preprint: https://doi.org/10.1101/2023.12.03.56840

View Publication Page
07/10/19 | Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor.
Beyene AG, Delevich K, Del Bonis-O’Donnell JT, Piekarski DJ, Lin WC, Thomas AW, Yang SJ, Kosillo P, Yang D, Prounis GS, Wilbrecht L, Landry MP
Science Advances. 2019 Jul 10;5(7):eaaw3108. doi: 10.1126/sciadv.aaw3108

Neuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000–1300 nm), near infrared catecholamine nanosensor (nIRCat). We demonstrate that nIRCats can be used to measure electrically and optogenetically evoked dopamine release in brain tissue, revealing hotspots with a median size of 2 µm. We also demonstrated that nIRCats are compatible with dopamine pharmacology and show D2 autoreceptor modulation of evoked dopamine release, which varied as a function of initial release magnitude at different hotspots. Together, our data demonstrate that nIRCats and other nanosensors of this class can serve as versatile synthetic optical tools to monitor neuromodulatory neurotransmitter release with high spatial resolution.

View Publication Page
05/10/24 | Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Grimm JB, Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Lavis LD, Wang S, Weaver VM, Pedram K
bioRxiv. 2024 May 10:. doi: 10.1101/2024.05.09.593460

All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

View Publication Page
Wu Lab
05/20/14 | Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres.
Wisniewski J, Hajj B, Chen J, Mizuguchi G, Xiao H, Wei D, Dahan M, Wu C
eLife. 2014 May 20;3:e02203. doi: 10.7554/eLife.02203

The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.DOI: http://dx.doi.org/10.7554/eLife.02203.001.

View Publication Page
Branson LabFreeman Lab
10/22/15 | Imaging the neural basis of locomotion.
Branson K, Freeman J
Cell. 2015 Oct 22;163(3):541-2. doi: 10.1016/j.cell.2015.10.014

To investigate the fundamental question of how nervous systems encode, organize, and sequence behaviors, Kato et al. imaged neural activity with cellular resolution across the brain of the worm Caenorhabditis elegans. Locomotion behavior seems to be continuously represented by cyclical patterns of distributed neural activity that are present even in immobilized animals.

View Publication Page
01/01/12 | Imaging the post-fusion release and capture of a vesicle membrane protein.
Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, Taraska JW
Nature Communications. 2012;3:1154. doi: 10.1038/ncomms2158

The molecular mechanism responsible for capturing, sorting and retrieving vesicle membrane proteins following triggered exocytosis is not understood. Here we image the post-fusion release and then capture of a vesicle membrane protein, the vesicular acetylcholine transporter, from single vesicles in living neuroendocrine cells. We combine these measurements with super-resolution interferometric photo-activation localization microscopy and electron microscopy, and modelling to map the nanometer-scale topography and architecture of the structures responsible for the transporter’s capture following exocytosis. We show that after exocytosis, the transporter rapidly diffuses into the plasma membrane, but most travels only a short distance before it is locally captured over a dense network of membrane-resident clathrin-coated structures. We propose that the extreme density of these structures acts as a short-range diffusion trap. They quickly sequester diffusing vesicle material and limit its spread across the membrane. This system could provide a means for clathrin-mediated endocytosis to quickly recycle vesicle proteins in highly excitable cells.

View Publication Page
11/26/13 | Imaging the transcriptome.
Lionnet T
Molecular Systems Biology. 2013 Nov 26;9:710. doi: 10.1038/msb.2013.67