Filter
Associated Lab
- Aguilera Castrejon Lab (16) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (63) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (38) Apply Baker Lab filter
- Betzig Lab (112) Apply Betzig Lab filter
- Beyene Lab (13) Apply Beyene Lab filter
- Bock Lab (17) Apply Bock Lab filter
- Branson Lab (52) Apply Branson Lab filter
- Card Lab (41) Apply Card Lab filter
- Cardona Lab (63) Apply Cardona Lab filter
- Chklovskii Lab (13) Apply Chklovskii Lab filter
- Clapham Lab (14) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (12) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (46) Apply Dickson Lab filter
- Druckmann Lab (25) Apply Druckmann Lab filter
- Dudman Lab (50) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (11) Apply Egnor Lab filter
- Espinosa Medina Lab (19) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (41) Apply Fetter Lab filter
- Fitzgerald Lab (29) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (38) Apply Funke Lab filter
- Gonen Lab (91) Apply Gonen Lab filter
- Grigorieff Lab (62) Apply Grigorieff Lab filter
- Harris Lab (60) Apply Harris Lab filter
- Heberlein Lab (94) Apply Heberlein Lab filter
- Hermundstad Lab (26) Apply Hermundstad Lab filter
- Hess Lab (77) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (46) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (6) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (14) Apply Karpova Lab filter
- Keleman Lab (13) Apply Keleman Lab filter
- Keller Lab (76) Apply Keller Lab filter
- Koay Lab (18) Apply Koay Lab filter
- Lavis Lab (148) Apply Lavis Lab filter
- Lee (Albert) Lab (34) Apply Lee (Albert) Lab filter
- Leonardo Lab (23) Apply Leonardo Lab filter
- Li Lab (28) Apply Li Lab filter
- Lippincott-Schwartz Lab (168) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (6) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (61) Apply Liu (Zhe) Lab filter
- Looger Lab (138) Apply Looger Lab filter
- Magee Lab (49) Apply Magee Lab filter
- Menon Lab (18) Apply Menon Lab filter
- Murphy Lab (13) Apply Murphy Lab filter
- O'Shea Lab (6) Apply O'Shea Lab filter
- Otopalik Lab (13) Apply Otopalik Lab filter
- Pachitariu Lab (47) Apply Pachitariu Lab filter
- Pastalkova Lab (18) Apply Pastalkova Lab filter
- Pavlopoulos Lab (19) Apply Pavlopoulos Lab filter
- Pedram Lab (15) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (51) Apply Reiser Lab filter
- Riddiford Lab (44) Apply Riddiford Lab filter
- Romani Lab (43) Apply Romani Lab filter
- Rubin Lab (143) Apply Rubin Lab filter
- Saalfeld Lab (63) Apply Saalfeld Lab filter
- Satou Lab (16) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (67) Apply Schreiter Lab filter
- Sgro Lab (21) Apply Sgro Lab filter
- Shroff Lab (30) Apply Shroff Lab filter
- Simpson Lab (23) Apply Simpson Lab filter
- Singer Lab (80) Apply Singer Lab filter
- Spruston Lab (93) Apply Spruston Lab filter
- Stern Lab (156) Apply Stern Lab filter
- Sternson Lab (54) Apply Sternson Lab filter
- Stringer Lab (35) Apply Stringer Lab filter
- Svoboda Lab (135) Apply Svoboda Lab filter
- Tebo Lab (33) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (21) Apply Tillberg Lab filter
- Tjian Lab (64) Apply Tjian Lab filter
- Truman Lab (88) Apply Truman Lab filter
- Turaga Lab (50) Apply Turaga Lab filter
- Turner Lab (37) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (18) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (25) Apply Wang (Shaohe) Lab filter
- Wu Lab (9) Apply Wu Lab filter
- Zlatic Lab (28) Apply Zlatic Lab filter
- Zuker Lab (25) Apply Zuker Lab filter
Associated Project Team
- CellMap (12) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (2) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (10) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (49) Apply FlyLight filter
- GENIE (45) Apply GENIE filter
- Integrative Imaging (3) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (18) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (49) Apply Transcription Imaging filter
Publication Date
- 2025 (92) Apply 2025 filter
- 2024 (221) Apply 2024 filter
- 2023 (160) Apply 2023 filter
- 2022 (193) Apply 2022 filter
- 2021 (194) Apply 2021 filter
- 2020 (196) Apply 2020 filter
- 2019 (202) Apply 2019 filter
- 2018 (232) Apply 2018 filter
- 2017 (217) Apply 2017 filter
- 2016 (209) Apply 2016 filter
- 2015 (252) Apply 2015 filter
- 2014 (236) Apply 2014 filter
- 2013 (194) Apply 2013 filter
- 2012 (190) Apply 2012 filter
- 2011 (190) Apply 2011 filter
- 2010 (161) Apply 2010 filter
- 2009 (158) Apply 2009 filter
- 2008 (140) Apply 2008 filter
- 2007 (106) Apply 2007 filter
- 2006 (92) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
4079 Publications
Showing 2221-2230 of 4079 resultsTraditional approaches for increasing the affinity of a protein for its ligand focus on constructing improved surface complementarity in the complex by altering the protein binding site to better fit the ligand. Here we present a novel strategy that leaves the binding site intact, while residues that allosterically affect binding are mutated. This method takes advantage of conformationally distinct states, each with different ligand-binding affinities, and manipulates the equilibria between these conformations. We demonstrate this approach in the Escherichia coli maltose binding protein by introducing mutations, located at some distance from the ligand binding pocket, that sterically affect the equilibrium between an open, apo-state and a closed, ligand-bound state. A family of 20 variants was generated with affinities ranging from an approximately 100-fold improvement (7.4 nM) to an approximately two-fold weakening (1.8 mM) relative to the wild type protein (800 nM).
Hundreds of millions of structured proteins sustain life through chemical interactions and catalytic reactions1. Though dynamic, these proteins are assumed to be built upon fixed scaffolds of secondary structure, α-helices and β-sheets. Experimentally determined structures of over >58,000 non-redundant proteins support this assumption, though it has recently been challenged by ∼100 fold-switching proteins2. These “metamorphic3” proteins, though ostensibly rare, raise the question of how many uncharacterized proteins have shapeshifting–rather than fixed–secondary structures. To address this question, we developed a comparative sequence-based approach that predicts fold-switching proteins from differences in secondary structure propensity. We applied this approach to the universally conserved NusG transcription factor family of ∼15,000 proteins, one of which has a 50-residue regulatory subunit experimentally shown to switch between α-helical and β-sheet folds4. Our approach predicted that 25% of the sequences in this family undergo similar α-helix ⇌ β-sheet transitions, a frequency two orders of magnitude larger than previously observed. Our predictions evade state-of-the-art computational methods but were confirmed experimentally by circular dichroism and nuclear magnetic resonance spectroscopy for all 10 assiduously chosen dissimilar variants. These results suggest that fold switching is a pervasive mechanism of transcriptional regulation in all kingdoms of life and imply that numerous uncharacterized proteins may also switch folds.
The protein folding paradigm asserts that the three-dimensional structure of a protein is determined by its amino acid sequence. Here we show that a substantial population of proteins from the NusG superfamily of transcription factors do not adhere to this paradigm. Previous work demonstrated that one member of this superfamily has a regulatory domain that completely switches between α-helical and β-sheet folds, but the pervasiveness of this fold-switching mechanism is uncertain. To address this question, we developed a sequence-based predictor, which revealed that thousands of proteins from this superfamily switch folds. Circular dichroism and nuclear magnetic resonance spectroscopies of 10 sequence-diverse variants confirmed our predictions. By contrast, state-of-the-art methods based on the protein folding paradigm assume that related sequences adopt the same fold and thus predicted that the regulatory domains of all variants adopt only the β-sheet fold. Removal of this bias revealed that residue-residue contacts from both α-helical and β-sheet folds are conserved in a large subpopulation of fold-switching domains, poising them to assume disparate conformations. Our results suggest that fold switching is a pervasive mechanism of transcriptional regulation in all kingdoms of life and indicate that expanding the protein folding paradigm may reveal the involvement of fold-switching proteins in diverse biological processes.
We have developed and characterized a method, based on reflection interference contrast microscopy, to simultaneously determine the three-dimensional positions of multiple particles in a colloidal monolayer. To evaluate this method, the interaction of 6.8 microm (+/-5%) diameter lipid-derivatized silica microspheres with an underlying planar borosilicate substrate is studied. Measured colloidal height distributions are consistent with expectations for an electrostatically levitated colloidal monolayer. The precision of the method is analyzed using experimental techniques in addition to computational bootstrapping algorithms. In its present implementation, this technique achieves 16 nm lateral and 1 nm vertical precision.
The hindbrain of larval zebrafish contains a relatively simple ground plan in which the neurons throughout it are arranged into stripes that represent broad neuronal classes that differ in transmitter identity, morphology, and transcription factor expression. Within the stripes, neurons are stacked continuously according to age as well as structural and functional properties, such as axonal extent, input resistance, and the speed at which they are recruited during movements. Here we address the question of how particular networks among the many different sensory-motor networks in hindbrain arise from such an orderly plan. We use a combination of transgenic lines and pairwise patch recording to identify excitatory and inhibitory interneurons in the hindbrain network for escape behaviors initiated by the Mauthner cell. We map this network onto the ground plan to show that an individual hindbrain network is built by drawing components in predictable ways from the underlying broad patterning of cell types stacked within stripes according to their age and structural and functional properties. Many different specialized hindbrain networks may arise similarly from a simple early patterning.
Drosophila is a marvelous system to study the underlying principles that govern how neural circuits govern behaviors. The scale of the fly brain (approximately 100,000 neurons) and the complexity of the behaviors the fly can perform make it a tractable experimental model organism. In addition, 100 years and hundreds of labs have contributed to an extensive array of tools and techniques that can be used to dissect the function and organization of the fly nervous system. This review discusses both the conceptual challenges and the specific tools for a neurogenetic approach to circuit mapping in Drosophila.
In this paper, we propose a mapping from the Auto-context model to a deep Convolutional Neural Network (ConvNet), bridging the gap be- tween these two models, and helping address the challenge of training ConvNets with limited training data.
Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.
Empirical estimates of the dimensionality of neural population activity are often much lower than the population size. Similar phenomena are also observed in trained and designed neural network models. These experimental and computational results suggest that mapping low-dimensional dynamics to high-dimensional neural space is a common feature of cortical computation. Despite the ubiquity of this observation, the constraints arising from such mapping are poorly understood. Here we consider a specific example of mapping low-dimensional dynamics to high-dimensional neural activity-the neural engineering framework. We analytically solve the framework for the classic ring model-a neural network encoding a static or dynamic angular variable. Our results provide a complete characterization of the success and failure modes for this model. Based on similarities between this and other frameworks, we speculate that these results could apply to more general scenarios.
Mapping mammalian synaptic connectivity has long been an important goal of neuroscientists since it is considered crucial for explaining human perception and behavior. Yet, despite enormous efforts, the overwhelming complexity of the neural circuitry and the lack of appropriate techniques to unravel it have limited the success of efforts to map connectivity. However, recent technological advances designed to overcome the limitations of conventional methods for connectivity mapping may bring about a turning point. Here, we address the promises and pitfalls of these new mapping technologies.