Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
In the field of biomedical imaging analysis on single-cell level, reliable and fast segmentation of the cell nuclei from the background on three-dimensional images is highly needed for the further analysis. In this work we propose an interactive cell segmentation toolkit that first establishes a set of exemplar regions from user input through an easy and intuitive interface in both 2D and 3D in real-time, then
extracts the shape and intensity features from those exemplars. Based on a local contrast-constrained region growing scheme, each connected component in the whole image would be filtered by the features from exemplars, forming an “exemplar-matching” group which passed the filtering and would be part of the final segmentation result, and a “non-exemplar-matching” group in which components
would be further segmented by the gradient vector field based algorithm. The results of the filtering process are visualized back to the user in near real-time, thus enhancing the experience in exemplar selecting and parameter tuning. The toolkit is distributed as a plugin within the open source Vaa3D system (http://vaa3d.org).