Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

19 Janelia Publications

Showing 1-10 of 19 results
Your Criteria:
    Baker Lab
    04/16/14 | A small subset of fruitless subesophageal neurons modulate early courtship in Drosophila.
    Tran DH, Meissner GW, French RL, Baker BS
    PLoS One. 2014 Apr 16;9(4):e95472. doi: 10.1371/journal.pone.0095472

    We show that a small subset of two to six subesophageal neurons, expressing the male products of the male courtship master regulator gene products fruitlessMale (fruM), are required in the early stages of the Drosophila melanogaster male courtship behavioral program. Loss of fruM expression or inhibition of synaptic transmission in these fruM(+) neurons results in delayed courtship initiation and a failure to progress to copulation primarily under visually-deficient conditions. We identify a fruM-dependent sexually dimorphic arborization in the tritocerebrum made by two of these neurons. Furthermore, these SOG neurons extend descending projections to the thorax and abdominal ganglia. These anatomical and functional characteristics place these neurons in the position to integrate gustatory and higher-order signals in order to properly initiate and progress through early courtship.

    View Publication Page
    Baker Lab
    07/02/14 | Central brain neurons expressing doublesex regulate female receptivity in Drosophila.
    Zhou C, Pan Y, Robinett CC, Meissner GW, Baker BS
    Neuron. 2014 Jul 2;83(1):149-63. doi: 10.1016/j.neuron.2014.05.038

    Drosophila melanogaster females respond to male courtship by either rejecting the male or allowing copulation. The neural mechanisms underlying these female behaviors likely involve the integration of sensory information in the brain. Because doublesex (dsx) controls other aspects of female differentiation, we asked whether dsx-expressing neurons mediate virgin female receptivity to courting males. Using intersectional techniques to manipulate the activities of defined subsets of dsx-expressing neurons, we found that activation of neurons in either the pCd or pC1 clusters promotes receptivity, while silencing these neurons makes females unreceptive. Furthermore, pCd and pC1 neurons physiologically respond to the male-specific pheromone cis-vaccenyl acetate (cVA), while pC1 neurons also respond to male courtship song. The pCd and pC1 neurons expressing dsx in females do not express transcripts from the fruitless (fru) P1 promoter. Thus, virgin female receptivity is controlled at least in part by neurons that are distinct from those governing male courtship.

    View Publication Page
    Jayaraman LabBaker Lab
    09/21/15 | Central neural circuitry mediating courtship song perception in male Drosophila.
    Zhou C, Franconville R, Vaughan AG, Robinett CC, Jayaraman V, Baker BS
    eLife. 2015 Sep 21;4:. doi: 10.7554/eLife.08477

    Animals use acoustic signals across a variety of social behaviors, particularly courtship. In Drosophila, song is detected by antennal mechanosensory neurons and further processed by second-order aPN1/aLN(al) neurons. However, little is known about the central pathways mediating courtship hearing. In this study, we identified a male-specific pathway for courtship hearing via third-order ventrolateral protocerebrum Projection Neuron 1 (vPN1) neurons and fourth-order pC1 neurons. Genetic inactivation of vPN1 or pC1 disrupts song-induced male-chaining behavior. Calcium imaging reveals that vPN1 responds preferentially to pulse song with long inter-pulse intervals (IPIs), while pC1 responses to pulse song closely match the behavioral chaining responses at different IPIs. Moreover, genetic activation of either vPN1 or pC1 induced courtship chaining, mimicking the behavioral response to song. These results outline the aPN1-vPN1-pC1 pathway as a labeled line for the processing and transformation of courtship song in males.

    View Publication Page
    Baker Lab
    02/24/15 | Constraints on the evolution of a doublesex target gene arising from doublesex's pleiotropic deployment.
    Luo SD, Baker BS
    Proceedings of the National Academy of Sciences of the United States of America. 2015 Feb 24;112(8):E852-61. doi: 10.1073/pnas.1501192112

    "Regulatory evolution," that is, changes in a gene's expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSX(F) in females and DSX(M) in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues.

    View Publication Page
    Baker Lab
    07/01/11 | Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development.
    Luo SD, Shi GW, Baker BS
    Development. 2011 Jul;138(13):2761-71. doi: 10.1242/dev.065227

    Uncovering the direct regulatory targets of doublesex (dsx) and fruitless (fru) is crucial for an understanding of how they regulate sexual development, morphogenesis, differentiation and adult functions (including behavior) in Drosophila melanogaster. Using a modified DamID approach, we identified 650 DSX-binding regions in the genome from which we then extracted an optimal palindromic 13 bp DSX-binding sequence. This sequence is functional in vivo, and the base identity at each position is important for DSX binding in vitro. In addition, this sequence is enriched in the genomes of D. melanogaster (58 copies versus approximately the three expected from random) and in the 11 other sequenced Drosophila species, as well as in some other Dipterans. Twenty-three genes are associated with both an in vivo peak in DSX binding and an optimal DSX-binding sequence, and thus are almost certainly direct DSX targets. The association of these 23 genes with optimum DSX binding sites was used to examine the evolutionary changes occurring in DSX and its targets in insects.

    View Publication Page
    Baker Lab
    01/01/12 | Doublesex functions early and late in gustatory sense organ development.
    Mellert DJ, Robinett CC, Baker BS
    PLoS One. 2012;7:e51489. doi: 10.1371/journal.pone.0051489

    Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.

    View Publication Page
    Baker Lab
    06/24/11 | Functional dissection of the neural substrates for sexual behaviors in Drosophila melanogaster.
    Meissner GW, Manoli DS, Chavez JF, Knapp J, Lin TL, Stevens RJ, Mellert DJ, Tran DH, Baker BS
    Genetics. 2011 Jun 24;189(1):195-211. doi: 10.1534/genetics.111.129940

    The male-specific Fruitless proteins (Fru(M)) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened  1000 GAL4 lines, using assays for general courtship, male-male interactions, and male fertility to determine the phenotypes resulting from the GAL4 driven inhibition of Fru(M) expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups based on additional neurobiological and behavioral criteria. For example, in some lines restoration of Fru(M) expression in cholinergic neurons restores fertility or reduces male-male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately whereas in other lines this phenotype result from apparent habituation deficits. Inhibition of ectopic Fru(M) expression in females, in populations of neurons where Fru(M) is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous Fru(M) expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with Fru(M) expression in many regions of the nervous system suggesting likely redundant Fru(M)-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation.

    View Publication Page
    Baker Lab
    07/03/13 | Genetic and neural mechanisms that inhibit Drosophila from mating with other species.
    Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N, Kwong S, Cai AG, Neitz J, Renslo A, Baker BS, Shah NM
    Cell. 2013 Jul 3;154(1):89-102. doi: 10.1016/j.cell.2013.06.008

    Genetically hard-wired neural mechanisms must enforce behavioral reproductive isolation because interspecies courtship is rare even in sexually na{\"ıve animals of most species. We find that the chemoreceptor Gr32a inhibits male D. melanogaster from courting diverse fruit fly species. Gr32a recognizes nonvolatile aversive cues present on these reproductively dead-end targets, and activity of Gr32a neurons is necessary and sufficient to inhibit interspecies courtship. Male-specific Fruitless (Fru(M)), a master regulator of courtship, also inhibits interspecies courtship. Gr32a and Fru(M) are not coexpressed, but Fru(M) neurons contact Gr32a neurons, suggesting that these genes influence a shared neural circuit that inhibits interspecies courtship. Gr32a and Fru(M) also suppress within-species intermale courtship, but we show that distinct mechanisms preclude sexual displays toward conspecific males and other species. Although this chemosensory pathway does not inhibit interspecies mating in D. melanogaster females, similar mechanisms appear to inhibit this behavior in many other male drosophilids.

    View Publication Page
    Baker Lab
    07/28/17 | Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila.
    Chen D, Sitaraman D, Chen N, Jin X, Han C, Chen J, Sun M, Baker BS, Nitabach MN, Pan Y
    Nature Communications. 2017 Jul 28;8(1):154. doi: 10.1038/s41467-017-00087-5

    Animals execute one particular behavior among many others in a context-dependent manner, yet the mechanisms underlying such behavioral choice remain poorly understood. Here we studied how two fundamental behaviors, sex and sleep, interact at genetic and neuronal levels in Drosophila. We show that an increased need for sleep inhibits male sexual behavior by decreasing the activity of the male-specific P1 neurons that coexpress the sex determination genes fru (M) and dsx, but does not affect female sexual behavior. Further, we delineate a sex-specific neuronal circuit wherein the P1 neurons encoding increased courtship drive suppressed male sleep by forming mutually excitatory connections with the fru (M) -positive sleep-controlling DN1 neurons. In addition, we find that FRU(M) regulates male courtship and sleep through distinct neural substrates. These studies reveal the genetic and neuronal basis underlying the sex-specific interaction between sleep and sexual behaviors in Drosophila, and provide insights into how competing behaviors are co-regulated.Genes and circuits involved in sleep and sexual arousal have been extensively studied in Drosophila. Here the authors identify the sex determination genes fruitless and doublesex, and a sex-specific P1-DN1 neuronal feedback that governs the interaction between these competing behaviors.

    View Publication Page
    Baker Lab
    01/16/14 | Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila.
    Pan Y, Baker BS
    Cell. 2014 Jan 16;156(1-2):236-48. doi: 10.1016/j.cell.2013.11.041

    Wild-type D. melanogaster males innately possess the ability to perform a multistep courtship ritual to conspecific females. The potential for this behavior is specified by the male-specific products of the fruitless (fru(M)) gene; males without fru(M) do not court females when held in isolation. We show that such fru(M) null males acquire the potential for courtship when grouped with other flies; they apparently learn to court flies with which they were grouped, irrespective of sex or species and retain this behavior for at least a week. The male-specific product of the doublesex gene (dsx(M)) is necessary and sufficient for the acquisition of the potential for such experience-dependent courtship. These results reveal a process that builds, via dsx(M) and social experience, the potential for a more flexible sexual behavior, which could be evolutionarily conserved as dsx-related genes that function in sexual development are found throughout the animal kingdom.

    View Publication Page