Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

166 Janelia Publications

Showing 11-20 of 166 results
Your Criteria:
    09/20/22 | A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling.
    Mondal C, Gacha-Garay MJ, Larkin KA, Adikes RC, Di Martino JS, Chien C, Fraser M, Eni-Aganga I, Agullo-Pascual E, Cialowicz K, Ozbek U, Naba A, Gaitas A, Fu T, Upadhyayula S, Betzig E, Matus DQ, Martin BL, Bravo-Cordero JJ
    Cell Reports. 2022 Sep 20;40(12):111358. doi: 10.1016/j.celrep.2022.111358

    Many breast cancer (BC) patients suffer from complications of metastatic disease. To form metastases, cancer cells must become migratory and coordinate both invasive and proliferative programs at distant organs. Here, we identify srGAP1 as a regulator of a proliferative-to-invasive switch in BC cells. High-resolution light-sheet microscopy demonstrates that BC cells can form actin-rich protrusions during extravasation. srGAP1 cells display a motile and invasive phenotype that facilitates their extravasation from blood vessels, as shown in zebrafish and mouse models, while attenuating tumor growth. Interestingly, a population of srGAP1 cells remain as solitary disseminated tumor cells in the lungs of mice bearing BC tumors. Overall, srGAP1 cells have increased Smad2 activation and TGF-β2 secretion, resulting in increased invasion and p27 levels to sustain quiescence. These findings identify srGAP1 as a mediator of a proliferative to invasive phenotypic switch in BC cells in vivo through a TGF-β2-mediated signaling axis.

    View Publication Page
    07/26/22 | A scalable and modular automated pipeline for stitching of large electron microscopy datasets.
    Mahalingam G, Torres R, Kapner D, Trautman ET, Fliss T, Seshamani S, Perlman E, Young R, Kinn S, Buchanan J, Takeno MM, Yin W, Bumbarger DJ, Gwinn RP, Nyhus J, Lein E, Smith SJ, Reid RC, Khairy KA, Saalfeld S, Collman F, Macarico da Costa N
    eLife. 2022 Jul 26;11:. doi: 10.7554/eLife.76534

    Serial-section electronmicroscopy (ssEM) is themethod of choice for studyingmacroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so called connectomes. In order to use this data, consisting of up to 10 individual EM images, it must be assembled into a volume, requiring seamless 2D stitching from each physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render (27) services used in the volume assembly of the brain of adult Drosophilamelanogaster (30). It achieves high throughput by operating on themeta-data and transformations of each image stored in a database, thus eliminating the need to render intermediate output. ASAP ismodular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (28; 8) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.

    View Publication Page
    09/06/22 | A sensitive and specific genetically encoded potassium ion biosensor for in vivo applications across the tree of life.
    Wu S, Wen Y, Serre NB, Laursen CC, Dietz AG, Taylor BR, Drobizhev M, Molina RS, Abhi Aggarwal , Rancic V, Becker M, Ballanyi K, Podgorski K, Hirase H, Nedergaard M, Fendrych M, Lemieux MJ, Eberl DF, Kay AR, Campbell RE, Shen Y
    PLoS Biology. 2022 Sep 06;20(9):e3001772. doi: 10.1371/journal.pbio.3001772

    Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.

    View Publication Page
    09/01/22 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
    Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
    Cell. 2022 Sep 01;185(18):3390-3407. doi: 10.1016/j.cell.2022.07.026

    Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

    View Publication Page
    08/24/22 | A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages.
    Corrales M, Cocanougher BT, Kohn AB, Wittenbach JD, Long XS, Lemire A, Cardona A, Singer RH, Moroz LL, Zlatic M
    Neural Development. 2022 Aug 24;17(1):8. doi: 10.1186/s13064-022-00164-6

    Molecular profiles of neurons influence neural development and function but bridging the gap between genes, circuits, and behavior has been very difficult. Here we used single cell RNAseq to generate a complete gene expression atlas of the Drosophila larval central nervous system composed of 131,077 single cells across three developmental stages (1 h, 24 h and 48 h after hatching). We identify 67 distinct cell clusters based on the patterns of gene expression. These include 31 functional mature larval neuron clusters, 1 ring gland cluster, 8 glial clusters, 6 neural precursor clusters, and 13 developing immature adult neuron clusters. Some clusters are present across all stages of larval development, while others are stage specific (such as developing adult neurons). We identify genes that are differentially expressed in each cluster, as well as genes that are differentially expressed at distinct stages of larval life. These differentially expressed genes provide promising candidates for regulating the function of specific neuronal and glial types in the larval nervous system, or the specification and differentiation of adult neurons. The cell transcriptome Atlas of the Drosophila larval nervous system is a valuable resource for developmental biology and systems neuroscience and provides a basis for elucidating how genes regulate neural development and function.

    View Publication Page
    08/13/22 | A vast space of compact strategies for highly efficient decisions
    Tzuhsuan Ma , Ann M Hermundstad
    bioRxiv. 2022 Aug 13:. doi: 10.1101/2022.08.10.503471

    When foraging in dynamic and uncertain environments, animals can benefit from basing their decisions on smart inferences about hidden properties of the world. Typical theoretical approaches to understand the strategies that animals use in such settings combine Bayesian inference and value iteration to derive optimal behavioral policies that maximize total reward given changing beliefs about the environment. However, specifying these beliefs requires infinite numerical precision; with limited resources, this problem can no longer be separated into optimizing inference and optimizing action selections. To understand the space of behavioral policies in this constrained setting, we enumerate and evaluate all possible behavioral programs that can be constructed from just a handful of states. We show that only a small fraction of the top-performing programs can be constructed by approximating Bayesian inference; the remaining programs are structurally or even functionally distinct from Bayesian. To assess structural and functional relationships among all programs, we developed novel tree embedding algorithms; these embeddings, which are capable of extracting different relational structures within the program space, reveal that nearly all good programs are closely connected through single algorithmic “mutations”. We demonstrate how one can use such relational structures to efficiently search for good solutions via an evolutionary algorithm. Moreover, these embeddings reveal that the diversity of non-Bayesian behaviors originates from a handful of key mutations that broaden the functional repertoire within the space of good programs. The fact that this diversity of behaviors does not significantly compromise performance suggests a novel approach for studying how these strategies generalize across tasks.

    View Publication Page
    05/25/22 | Accurate angular integration with only a handful of neurons.
    Marcella Noorman , Brad K Hulse , Vivek Jayaraman , Sandro Romani , Ann M Hermundstad
    bioRxiv. 2022 May 25:. doi: 10.1101/2022.05.23.493052

    To flexibly navigate, many animals rely on internal spatial representations that persist when the animal is standing still in darkness, and update accurately by integrating the animal's movements in the absence of localizing sensory cues. Theories of mammalian head direction cells have proposed that these dynamics can be realized in a special class of networks that maintain a localized bump of activity via structured recurrent connectivity, and that shift this bump of activity via angular velocity input. Although there are many different variants of these so-called ring attractor networks, they all rely on large numbers of neurons to generate representations that persist in the absence of input and accurately integrate angular velocity input. Surprisingly, in the fly, Drosophila melanogaster, a head direction representation is maintained by a much smaller number of neurons whose dynamics and connectivity resemble those of a ring attractor network. These findings challenge our understanding of ring attractors and their putative implementation in neural circuits. Here, we analyzed failures of angular velocity integration that emerge in small attractor networks with only a few computational units. Motivated by the peak performance of the fly head direction system in darkness, we mathematically derived conditions under which small networks, even with as few as 4 neurons, achieve the performance of much larger networks. The resulting description reveals that by appropriately tuning the network connectivity, the network can maintain persistent representations over the continuum of head directions, and it can accurately integrate angular velocity inputs. We then analytically determined how performance degrades as the connectivity deviates from this optimally-tuned setting, and we find a trade-off between network size and the tuning precision needed to achieve persistence and accurate integration. This work shows how even small networks can accurately track an animal's movements to guide navigation, and it informs our understanding of the functional capabilities of discrete systems more broadly.

    View Publication Page
    07/27/22 | Actin nano-architecture of phagocytic podosomes
    J. Cody Herron , Shiqiong Hu , Takashi Watanabe , Ana T. Nogueira , Bei Liu , Megan Kern , Jesse Aaron , Aaron Taylor , Michael Pablo , Teng-Leong Chew , Timothy C. Elston , Klaus M. Hahn
    Nature Communications. 2022 Jul 27;13(1):4363. doi: 10.1101/2022.05.04.490675

    Podosomes are actin-enriched adhesion structures important for multiple cellular processes, including migration, bone remodeling, and phagocytosis. Here, we characterized the structure and organization of phagocytic podosomes using interferometric photoactivated localization microscopy (iPALM), a super-resolution microscopy technique capable of 15-20 nm resolution, together with structured illumination microscopy (SIM) and localization-based superresolution microscopy. Phagocytic podosomes were observed during frustrated phagocytosis, a model in which cells attempt to engulf micro-patterned IgG antibodies. For circular patterns, this resulted in regular arrays of podosomes with well-defined geometry. Using persistent homology, we developed a pipeline for semi-automatic identification and measurement of podosome features. These studies revealed an "hourglass" shape of the podosome actin core, a protruding "knob" at the bottom of the core, and two actin networks extending from the core. Additionally, the distributions of paxillin, talin, myosin II, α-actinin, cortactin, and microtubules relative to actin were characterized.

    View Publication Page
    06/02/22 | Allosteric interactions prime androgen receptor dimerization and activation.
    Wasmuth EV, Broeck AV, LaClair JR, Hoover EA, Lawrence KE, Paknejad N, Pappas K, Matthies D, Wang B, Feng W, Watson PA, Zinder JC, Karthaus WR, de la Cruz MJ, Hite RK, Manova-Todorova K, Yu Z, Weintraub ST, Klinge S, Sawyers CL
    Molecular Cell. 2022 Jun 02;82(11):2021-31. doi: 10.1016/j.molcel.2022.03.035

    The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.

    View Publication Page
    05/28/22 | An essential experimental control for functional connectivity mapping with optogenetics.
    David Tadres , Hiroshi M. Shiozaki , Ibrahim Tastekin , David L. Stern , Matthieu Louis
    bioRxiv. 2022 May 28:. doi: 10.1101/2022.05.26.493610

    To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression. Leaky Chrimson expression appears to be an inherent feature of current Chrimson transgenes, since artifactual connectivity was detected with Chrimson transgenes integrated into three different genomic locations (two insertions tested in larvae; a third insertion tested in the adult fly). These false-positive signals may complicate the interpretation of functional connectivity experiments. We illustrate how a no-Gal4 negative control improves interpretability of functional connectivity assays. We also propose a simple but effective procedure to identify experimental conditions that minimize potentially incorrect interpretations caused by leaky Chrimson expression.

    View Publication Page