Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block

Associated Support Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    03/01/24 | Architecture and flexibility of native kinetochores revealed by structural studies utilizing a thermophilic yeast
    Daniel J. Barrero , Sithara S. Wijeratne , Xiaowei Zhao , Grace F. Cunningham , Rui Yan , Christian R. Nelson , Yasuhiro Arimura , Hironori Funabiki , Charles L. Asbury , Zhiheng Yu , Radhika Subramanian , Sue Biggins
    bioRxiv. 2024 Mar 1:. doi: 10.1101/2024.02.28.582571

    Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and understanding how they are arranged is key to understanding how kinetochores perform their multiple functions. However, an integrated understanding of kinetochore architecture has not yet been established. To address this, we purified functional, native kinetochores from Kluyveromyces marxianus and examined them by electron microscopy, cryo-electron tomography and atomic force microscopy. The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies, and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

    View Publication Page
    04/01/24 | Cryo-electron tomographic investigation of native hippocampal glutamatergic synapses
    Aya Matsui , Catherine Spangler , Johannes Elferich , Momoko Shiozaki , Nikki Jean , Xiaowei Zhao , Maozhen Qin , Haining Zhong , Zhiheng Yu , Eric Gouaux
    bioRxiv. 2024 Apr 1:. doi: 10.1101/2024.04.01.587595

    Chemical synapses are the major sites of communication between neurons in the nervous system and mediate either excitatory or inhibitory signaling. At excitatory synapses, glutamate is the primary neurotransmitter and upon release from presynaptic vesicles, is detected by postsynaptic glutamate receptors, which include ionotropic AMPA and NMDA receptors. Here we have developed methods to identify glutamatergic synapses in brain tissue slices, label AMPA receptors with small gold nanoparticles (AuNPs), and prepare lamella for cryo-electron tomography studies. The targeted imaging of glutamatergic synapses in the lamella is facilitated by fluorescent pre- and postsynaptic signatures, and the subsequent tomograms allow for identification of key features of chemical synapses, including synaptic vesicles, the synaptic cleft and AuNP-labeled AMPA receptors. These methods pave the way for imaging natively derived brain regions at high resolution, using unstained, unfixed samples preserved under near-native conditions.

    View Publication Page
    03/29/24 | How short peptides can disassemble ultra-stable tau fibrils extracted from Alzheimer’s disease brain by a strain-relief mechanism
    Ke Hou , Peng Ge , Michael R. Sawaya , Joshua L. Dolinsky , Yuan Yang , Yi Xiao Jiang , Liisa Lutter , David R. Boyer , Xinyi Cheng , Justin Pi , Jeffrey Zhang , Jiahui Lu , Shixin Yang , Zhiheng Yu , Juli Feigon , David S. Eisenberg
    bioRxiv. 2024 Mar 29:. doi: 10.1101/2024.03.25.586668

    Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer’s disease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disassembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find assembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.

    View Publication Page