Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

47 Janelia Publications

Showing 31-40 of 47 results
Your Criteria:
    Sternson Lab
    09/08/11 | Metabolism: let them eat fat.
    Sternson SM
    Nature. 2011 Sep 8;477(7363):166-7. doi: 10.1038/477166a

    A specialist neuron uses an intriguing process to help control the body's response to hunger. A lipid pathway involving the breakdown of cellular components regulates the expression of a neuropeptide that affects feeding and body weight.

    View Publication Page
    Sternson Lab
    05/01/23 | Modulation of calcium signaling “on demand” to decipher the molecular mechanisms responsible for primary aldosteronism
    Fedlaoui B, Cosentino T, Al Sayed ZR, Fernandes-Rosa FL, Hulot J, Magnus C, Sternson SM, Travers-Allard S, Baron S, Giscos-Douriez I, Zennaro MC, Boulkroun S
    Archives of Cardiovascular Diseases Supplements. 2023 May 01;15(2):188. doi: 10.1016/j.acvdsp.2023.03.021

    Primary aldosteronism (PA) is the most frequent form of secondary hypertension. Over the past two decades, major advances have been made in our understanding of the disease with the identification of germline or somatic mutations in ion channels and pumps. These mutations enhance calcium signaling, the main trigger of aldosterone biosynthesis.

    View Publication Page
    01/20/23 | Multimodal mapping of cell types and projections in the central nucleus of the amygdala
    Yuhan Wang , Sabine Krabbe , Mark Eddison , Fredrick E. Henry , Greg Fleishman , Andrew L. Lemire , Lihua Wang , Wyatt Korff , Paul W. Tillberg , Andreas Lüthi , Scott M. Sternson
    eLife. 2023 Jan 20:. doi: 10.7554/eLife.84262

    The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-Seq) to classify molecularly defined cell types in the CEA and identified marker-genes to map the location of these neuronal types using expansion assisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ∼30,000 molecularly defined CEA neurons. Our study revealed spatio-molecular organization of the CEA, with medial and lateral CEA associated with distinct cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker-gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.

    View Publication Page
    Lee (Albert) LabSternson Lab
    06/16/16 | Near-perfect synaptic integration by Nav1.7 in hypothalamic neurons regulates body weight.
    Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM
    Cell. 2016 Jun 16;165(7):1749-61. doi: 10.1016/j.cell.2016.05.019

    Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.

    View Publication Page
    Sternson Lab
    06/01/13 | Neural circuits and motivational processes for hunger.
    Sternson SM, Betley JN, Cao ZF
    Current Opinion in Neurobiology. 2013 Jun;23(3):353-60. doi: 10.1016/j.conb.2013.04.006

    How does an organism’s internal state direct its actions? At one moment an animal forages for food with acrobatic feats such as tree climbing and jumping between branches. At another time, it travels along the ground to find water or a mate, exposing itself to predators along the way. These behaviors are costly in terms of energy or physical risk, and the likelihood of performing one set of actions relative to another is strongly modulated by internal state. For example, an animal in energy deficit searches for food and a dehydrated animal looks for water. The crosstalk between physiological state and motivational processes influences behavioral intensity and intent, but the underlying neural circuits are poorly understood. Molecular genetics along with optogenetic and pharmacogenetic tools for perturbing neuron function have enabled cell type-selective dissection of circuits that mediate behavioral responses to physiological state changes. Here, we review recent progress into neural circuit analysis of hunger in the mouse by focusing on a starvation-sensitive neuron population in the hypothalamus that is sufficient to promote voracious eating. We also consider research into the motivational processes that are thought to underlie hunger in order to outline considerations for bridging the gap between homeostatic and motivational neural circuits.

    View Publication Page
    Sternson Lab
    02/08/12 | Neuron transplantation partially reverses an obesity disorder in mice.
    Sternson SM
    Cell Metabolism. 2012 Feb 8;15(2):133-4. doi: 10.1016/j.cmet.2012.01.011

    Mice lacking leptin receptors are grossly obese and diabetic, in part due to dysfunction in brain circuits important for energy homeostasis. Transplantation of leptin receptor-expressing hypothalamic progenitor neurons into the brains of leptin receptor deficient mice led to integration into neural circuits, reduced obesity, and normalized circulating glucose levels.

    View Publication Page
    04/27/15 | Neurons for hunger and thirst transmit a negative-valence teaching signal.
    Betley JN, Xu S, Cao ZF, Gong R, Magnus CJ, Yu Y, Sternson SM
    Nature. 2015 Apr 27;521(7551):180-5. doi: 10.1038/nature14416

    Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics of two separate neuron populations that regulate energy and fluid homeostasis by using cell-type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.

    View Publication Page
    Sternson Lab
    08/26/15 | Optogenetics: 10 years after ChR2 in neurons-views from the community.
    Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A, Buzsáki G, Cardin JA, Costa RM, Dan Y, Goda Y, Graybiel AM, Häusser M, Hegemann P, Huguenard JR, Insel TR, Janak PH, Johnston D, Josselyn SA, Koch C, Kreitzer AC, Lüscher C, Malenka RC, Miesenböck G, Nagel G, Roska B, Schnitzer MJ, Shenoy KV, Soltesz I, Sternson SM, Tsien RW, Tsien RY, Turrigiano GG, Tye KM, Wilson RI
    Nature Neuroscience. 2015 Aug 26;18(9):1202-12. doi: 10.1038/nn.4106
    Sternson Lab
    12/05/13 | Parallel, redundant circuit organization for homeostatic control of feeding behavior.
    Betley JN, Cao ZF, Ritola KD, Sternson SM
    Cell. 2013 Dec 5;155(6):1337-50. doi: 10.1016/j.cell.2013.11.002

    Neural circuits for essential natural behaviors are shaped by selective pressure to coordinate reliable execution of flexible goal-directed actions. However, the structural and functional organization of survival-oriented circuits is poorly understood due to exceptionally complex neuroanatomy. This is exemplified by AGRP neurons, which are a molecularly defined population that is sufficient to rapidly coordinate voracious food seeking and consumption behaviors. Here, we use cell-type-specific techniques for neural circuit manipulation and projection-specific anatomical analysis to examine the organization of this critical homeostatic circuit that regulates feeding. We show that AGRP neuronal circuits use a segregated, parallel, and redundant output configuration. AGRP neuron axon projections that target different brain regions originate from distinct subpopulations, several of which are sufficient to independently evoke feeding. The concerted anatomical and functional analysis of AGRP neuron projection populations reveals a constellation of core forebrain nodes, which are part of an extended circuit that mediates feeding behavior.

    View Publication Page
    Sternson Lab
    07/27/17 | Raphe circuits on the menu.
    Yang H, Sternson SM
    Cell. 2017 Jul 27;170(3):409-10. doi: 10.1016/j.cell.2017.07.017

    The dorsal raphe nucleus (DRN) is an important brain area for body-weight regulation. In this issue of Cell, Nectow et al. uncover cell-type-specific neural circuitry and pharmacology for appetite control within the DRN.

    View Publication Page