Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

18 Janelia Publications

Showing 1-10 of 18 results
Your Criteria:
    10/18/19 | A bidirectional network for appetite control in larval zebrafish.
    Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim J, Nikitchenko M, Bahl A, Yang C, Ahrens MB, Kawakami K, Engert F, Kunes S
    Elife. 2019 Oct 18;8:. doi: 10.7554/eLife.43775

    Medial and lateral hypothalamic loci are known to suppress and enhance appetite, respectively, but the dynamics and functional significance of their interaction have yet to be explored. Here we report that, in larval zebrafish, primarily serotonergic neurons of the ventromedial caudal hypothalamus (cH) become increasingly active during food deprivation, whereas activity in the lateral hypothalamus (LH) is reduced. Exposure to food sensory and consummatory cues reverses the activity patterns of these two nuclei, consistent with their representation of opposing internal hunger states. Baseline activity is restored as food-deprived animals return to satiety via voracious feeding. The antagonistic relationship and functional importance of cH and LH activity patterns were confirmed by targeted stimulation and ablation of cH neurons. Collectively, the data allow us to propose a model in which these hypothalamic nuclei regulate different phases of hunger and satiety and coordinate energy balance via antagonistic control of distinct behavioral outputs.

    View Publication Page
    10/15/19 | Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes.
    Chen J, Mandel HB, Fitzgerald JE, Clark DA
    eLife. 2019 Oct 15;8:. doi: 10.7554/eLife.47579

    Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.

    View Publication Page
    10/09/19 | Computational neuroethology: A call to action.
    Datta SR, Anderson DJ, Branson K, Perona P, Leifer A
    Neuron. 2019 Oct 09;104(1):11-24. doi: 10.1016/j.neuron.2019.09.038

    The brain is worthy of study because it is in charge of behavior. A flurry of recent technical advances in measuring and quantifying naturalistic behaviors provide an important opportunity for advancing brain science. However, the problem of understanding unrestrained behavior in the context of neural recordings and manipulations remains unsolved, and developing approaches to addressing this challenge is critical. Here we discuss considerations in computational neuroethology-the science of quantifying naturalistic behaviors for understanding the brain-and propose strategies to evaluate progress. We point to open questions that require resolution and call upon the broader systems neuroscience community to further develop and leverage measures of naturalistic, unrestrained behavior, which will enable us to more effectively probe the richness and complexity of the brain.

    View Publication Page
    10/15/19 | Developmental organization of central neurons in the adult Drosophila ventral nervous system.
    Shepherd D, Sahota V, Court R, Williams DW, Truman JW
    Journal of Comparative Neurology. 2019 Oct 15;527(15):2573-2598. doi: 10.1002/cne.24690

    We have used MARCM to reveal the adult morphology of the post embryonically produced neurons in the thoracic neuromeres of the Drosophila VNS. The work builds on previous studies of the origins of the adult VNS neurons to describe the clonal organization of the adult VNS. We present data for 58 of 66 postembryonic thoracic lineages, excluding the motor neuron producing lineages (15 and 24) which have been described elsewhere. MARCM labels entire lineages but where both A and B hemilineages survive (e.g., lineages 19, 12, 13, 6, 1, 3, 8, and 11), the two hemilineages can be discriminated and we have described each hemilineage separately. Hemilineage morphology is described in relation to the known functional domains of the VNS neuropil and based on the anatomy we are able to assign broad functional roles for each hemilineage. The data show that in a thoracic hemineuromere, 16 hemilineages are primarily involved in controlling leg movements and walking, 9 are involved in the control of wing movements, and 10 interface between both leg and wing control. The data provide a baseline of understanding of the functional organization of the adult Drosophila VNS. By understanding the morphological organization of these neurons, we can begin to define and test the rules by which neuronal circuits are assembled during development and understand the functional logic and evolution of neuronal networks.

    View Publication Page
    10/18/19 | Drosulfakinin signaling in fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in Drosophila.
    Wu S, Guo C, Zhao H, Sun M, Chen J, Han C, Peng Q, Qiao H, Peng P, Liu Y, Luo SD, Pan Y
    Nature Communications. 2019 Oct 18;10(1):4770. doi: 10.1038/s41467-019-12758-6

    Animals perform or terminate particular behaviors by integrating external cues and internal states through neural circuits. Identifying neural substrates and their molecular modulators promoting or inhibiting animal behaviors are key steps to understand how neural circuits control behaviors. Here, we identify the Cholecystokinin-like peptide Drosulfakinin (DSK) that functions at single-neuron resolution to suppress male sexual behavior in Drosophila. We found that Dsk neurons physiologically interact with male-specific P1 neurons, part of a command center for male sexual behaviors, and function oppositely to regulate multiple arousal-related behaviors including sex, sleep and spontaneous walking. We further found that the DSK-2 peptide functions through its receptor CCKLR-17D3 to suppress sexual behaviors in flies. Such a neuropeptide circuit largely overlaps with the fruitless-expressing neural circuit that governs most aspects of male sexual behaviors. Thus DSK/CCKLR signaling in the sex circuitry functions antagonistically with P1 neurons to balance arousal levels and modulate sexual behaviors.

    View Publication Page
    10/06/19 | Expansion microscopy: scalable and convenient super-resolution microscopy.
    Tillberg PW, Chen F
    Annual Review of Cell and Developmental Biology. 2019 Oct 6;35:683-701. doi: 10.1146/annurev-cellbio-100818-125320

    Expansion microscopy (ExM) is a physical form of magnification that increases the effective resolving power of any microscope. Here, we describe the fundamental principles of ExM, as well as how recently developed ExM variants build upon and apply those principles. We examine applications of ExM in cell and developmental biology for the study of nanoscale structures as well as ExM's potential for scalable mapping of nanoscale structures across large sample volumes. Finally, we explore how the unique anchoring and hydrogel embedding properties enable postexpansion molecular interrogation in a purified chemical environment. ExM promises to play an important role complementary to emerging live-cell imaging techniques, because of its relative ease of adoption and modification and its compatibility with tissue specimens up to at least 200 μm thick. Expected final online publication date for the , Volume 35 is October 7, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

    View Publication Page
    Spruston LabSvoboda Lab
    10/30/19 | Functional clustering of dendritic activity during decision-making.
    Kerlin A, Boaz M, Flickinger D, MacLennan BJ, Dean MB, Davis C, Spruston N, Svoboda K
    Elife. 2019 Oct 30;8:. doi: 10.7554/eLife.46966

    The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decision task. A custom microscope allowed us to image the soma and up to 300 μm of contiguous dendrite at 15 Hz, while resolving individual spines. New analysis methods were used to estimate the frequency and spatial scales of activity in dendritic branches and spines. The majority of dendritic calcium transients were coincident with global events. However, task-associated calcium signals in dendrites and spines were compartmentalized by dendritic branching and clustered within branches over approximately 10 μm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic arbor, potentially supporting a large learning capacity in individual neurons.

    View Publication Page
    10/01/19 | Genetic dissection of active forgetting in labile and consolidated memories in Drosophila.
    Gao Y, Shuai Y, Zhang X, Peng Y, Wang L, He J, Zhong Y, Li Q
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Oct 01;116(42):21191-97. doi: 10.1073/pnas.1903763116

    Different memory components are forgotten through distinct molecular mechanisms. In , the activation of 2 Rho GTPases (Rac1 and Cdc42), respectively, underlies the forgetting of an early labile memory (anesthesia-sensitive memory, ASM) and a form of consolidated memory (anesthesia-resistant memory, ARM). Here, we dissected the molecular mechanisms that tie Rac1 and Cdc42 to the different types of memory forgetting. We found that 2 WASP family proteins, SCAR/WAVE and WASp, act downstream of Rac1 and Cdc42 separately to regulate ASM and ARM forgetting in mushroom body neurons. Arp2/3 complex, which organizes branched actin polymerization, is a canonical downstream effector of WASP family proteins. However, we found that Arp2/3 complex is required in Cdc42/WASp-mediated ARM forgetting but not in Rac1/SCAR-mediated ASM forgetting. Instead, we identified that Rac1/SCAR may function with formin Diaphanous (Dia), a nucleator that facilitates linear actin polymerization, in ASM forgetting. The present study, complementing the previously identified Rac1/cofilin pathway that regulates actin depolymerization, suggests that Rho GTPases regulate forgetting by recruiting both actin polymerization and depolymerization pathways. Moreover, Rac1 and Cdc42 may regulate different types of memory forgetting by tapping into different actin polymerization mechanisms.

    View Publication Page
    10/16/19 | Identification of cell types from single-cell transcriptomic data.
    Shekhar K, Menon V
    Methods in Molecular Biology. 2019 Oct 16;1935:45-77. doi: 10.1007/978-1-4939-9057-3_4

    Unprecedented technological advances in single-cell RNA-sequencing (scRNA-seq) technology have now made it possible to profile genome-wide expression in single cells at low cost and high throughput. There is substantial ongoing effort to use scRNA-seq measurements to identify the "cell types" that form components of a complex tissue, akin to taxonomizing species in ecology. Cell type classification from scRNA-seq data involves the application of computational tools rooted in dimensionality reduction and clustering, and statistical analysis to identify molecular signatures that are unique to each type. As datasets continue to grow in size and complexity, computational challenges abound, requiring analytical methods to be scalable, flexible, and robust. Moreover, careful consideration needs to be paid to experimental biases and statistical challenges that are unique to these measurements to avoid artifacts. This chapter introduces these topics in the context of cell-type identification, and outlines an instructive step-by-step example bioinformatic pipeline for researchers entering this field.

    View Publication Page
    10/09/19 | Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity.
    Coddington LT, Dudman JT
    Neuron. 2019 Oct 09;104(1):63-77. doi: 10.1016/j.neuron.2019.08.036

    Animals infer when and where a reward is available from experience with informative sensory stimuli and their own actions. In vertebrates, this is thought to depend upon the release of dopamine from midbrain dopaminergic neurons. Studies of the role of dopamine have focused almost exclusively on their encoding of informative sensory stimuli; however, many dopaminergic neurons are active just prior to movement initiation, even in the absence of sensory stimuli. How should current frameworks for understanding the role of dopamine incorporate these observations? To address this question, we review recent anatomical and functional evidence for action-related dopamine signaling. We conclude by proposing a framework in which dopaminergic neurons encode subjective signals of action initiation to solve an internal credit assignment problem.

    View Publication Page