Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

34 Janelia Publications

Showing 31-34 of 34 results
Your Criteria:
    09/03/14 | The basal ganglia
    Dudman JT, Cerfan CR
    The Rat Nervous System:391-440. doi: 10.1016/B978-0-12-374245-2.00017-6

    The basal ganglia plays a significant role in transforming activity in the cerebral cortex into directed behavior, involving motor learning, habit formation and the selection of actions based on desirable outcomes, and the organization of the basal ganglia is intimately linked to that of the cerebral cortex. In this chapter, we focus primarily on the neocortical part of the basal ganglia. A general canonical organizational plan of the neocortical-related basal ganglia is described. An understanding of the canonical organization of the neostriatal part of the basal ganglia, provides a framework for determining the general organizational principles of the parts of the basal ganglia connected with allocortical areas and the amygdala, and this is discussed. While it has been proposed that the basal ganglia provide interactions between disparate functional circuits, another approach might be that there are parallel functional circuits, in which distinct functions are for the most part maintained, or segregated, one from the other. This chapter, however, is biased toward the view that there is maintenance of functional parallel circuits in the organization of the basal ganglia, but that the circuit contains neuroanatomical features that provide for considerable interaction between adjacent circuits.

    View Publication Page
    03/21/16 | The basal ganglia: from motor commands to the control of vigor.
    Dudman JT, Krakauer JW
    Current Opinion in Neurobiology. 2016 Mar 21;37:158-66. doi: 10.1016/j.conb.2016.02.005

    Vertebrates are remarkable for their ability to select and execute goal-directed actions: motor skills critical for thriving in complex, competitive environments. A key aspect of a motor skill is the ability to execute its component movements over a range of speeds, amplitudes and frequencies (vigor). Recent work has indicated that a subcortical circuit, the basal ganglia, is a critical determinant of movement vigor in rodents and primates. We propose that the basal ganglia evolved from a circuit that in lower vertebrates and some mammals is sufficient to directly command simple or stereotyped movements to one that indirectly controls the vigor of goal-directed movements. The implications of a dual role of the basal ganglia in the control of vigor and response to reward are also discussed.

    View Publication Page
    05/21/14 | The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output.
    Brown J, Pan W, Dudman JT
    eLife. 2014 May 21;3:e02397. doi: 10.7554/eLife.02397

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001.

    View Publication Page
    10/15/18 | The timing of action determines reward prediction signals in identified midbrain dopamine neurons.
    Coddington LT, Dudman JT
    Nature Neuroscience. 2018 Oct 15;21(11):1563-73. doi: 10.1038/s41593-018-0245-7

    Animals adapt their behavior in response to informative sensory cues using multiple brain circuits. The activity of midbrain dopaminergic neurons is thought to convey a critical teaching signal: reward-prediction error. Although reward-prediction error signals are thought to be essential to learning, little is known about the dynamic changes in the activity of midbrain dopaminergic neurons as animals learn about novel sensory cues and appetitive rewards. Here we describe a large dataset of cell-attached recordings of identified dopaminergic neurons as naive mice learned a novel cue-reward association. During learning midbrain dopaminergic neuron activity results from the summation of sensory cue-related and movement initiation-related response components. These components are both a function of reward expectation yet they are dissociable. Learning produces an increasingly precise coordination of action initiation following sensory cues that results in apparent reward-prediction error correlates. Our data thus provide new insights into the circuit mechanisms that underlie a critical computation in a highly conserved learning circuit.

    View Publication Page