Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

121 Janelia Publications

Showing 41-50 of 121 results
Your Criteria:
    03/07/24 | Dendritic voltage imaging maps the biophysical basis of plateau potentials in the hippocampus
    Pojeong Park , J. David Wong-Campos , Daniel Itkis , Byung Hun Lee , Yitong Qi , Hunter C. Davis , Jonathan B. Grimm , Sarah E. Plutkis , Luke Lavis , Adam Ezra Cohen
    bioRxiv. 2024 Mar 7:. doi: 10.1101/2023.06.02.543490

    Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs) which interact with synaptic inputs to produce plateau potentials and to mediate synaptic plasticity. The biophysical rules which govern the timing, spatial structures, and ionic character of dendritic excitations are not well understood. We developed molecular, optical, and computational tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent bAP propagation in distal dendrites, driven by locally generated Na+ spikes (dSpikes). Dendritic depolarization creates a transient window for dSpike propagation, opened by A-type KV channel inactivation, and closed by slow NaV inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials, with accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture of how dendritic excitations shape associative plasticity rules.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    03/20/24 | Detecting abnormal cell behaviors from dry mass time series
    Bailly R, Malfante M, Allier C, Paviolo C, Ghenim L, Padmanabhan K, Bardin S, Mars J
    Scientific Reports. 2024 Mar 20;14(1):. doi: 10.1038/s41598-024-57684-w

    The prediction of pathological changes on single cell behaviour is a challenging task for deep learning models. Indeed, in self-supervised learning methods, no prior labels are used for the training and all of the information for event predictions are extracted from the data themselves. We present here a novel self-supervised learning model for the detection of anomalies in a given cell population, StArDusTS. Cells are monitored over time, and analysed to extract time-series of dry mass values. We assessed its performances on different cell lines, showing a precision of 96% in the automatic detection of anomalies. Additionally, anomaly detection was also associated with cell measurement errors inherent to the acquisition or analysis pipelines, leading to an improvement of the upstream methods for feature extraction. Our results pave the way to novel architectures for the continuous monitoring of cell cultures in applied research or bioproduction applications, and for the prediction of pathological cellular changes.

    View Publication Page
    03/29/24 | Development of a First-in-Class RIPK1 Degrader to Enhance Antitumor Immunity
    Xin Yu , Dong Lu , Xiaoli Qi , Hanfeng Lin , Bryan L. Holloman , Feng Jin , Longyong Xu , Lang Ding , Weiyi Peng , Meng C. Wang , Xi Chen , Jin Wang
    bioRxiv. 2024 Mar 29:. doi: 10.1101/2024.03.25.586133

    The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and has emerged as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain, we harnessed proteolysis targeting chimera (PROTAC) technology to develop a first-in-class RIPK1 degrader, LD4172. LD4172 exhibited potent and selective RIPK1 degradation both in vitro and in vivo. Degradation of RIPK1 by LD4172 triggered immunogenic cell death (ICD) and enriched tumor-infiltrating lymphocytes and substantially sensitized the tumors to anti-PD1 therapy. This work reports the first RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to immune checkpoint blockade therapy.

    View Publication Page
    01/09/24 | Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model
    Trung V. Phan , Henry H. Mattingly , Lam Vo , Jonathan S. Marvin , Loren L. Looger , Thierry Emonet
    Proceedings of the National Academy of Sciences. 2024 Jan 09:. doi: 10.1073/pnas.230925112

    Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering new insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.

    View Publication Page
    02/27/24 | Distinct streams for supervised and unsupervised learning in the visual cortex
    Lin Zhong , Scott Baptista , Rachel Gattoni , Jon Arnold , Daniel Flickinger , Carsen Stringer , Marius Pachitariu
    bioRxiv. 2024 Feb 27:. doi: 10.1101/2024.02.25.581990

    Representation learning in neural networks may be implemented with supervised or unsupervised algorithms, distinguished by the availability of feedback. In sensory cortex, perceptual learning drives neural plasticity, but it is not known if this is due to supervised or unsupervised learning. Here we recorded populations of up to 90,000 neurons simultaneously from the primary visual cortex (V1) and higher visual areas (HVA), while mice learned multiple tasks as well as during unrewarded exposure to the same stimuli. Similar to previous studies, we found that neural changes in task mice were correlated with their behavioral learning. However, the neural changes were mostly replicated in mice with unrewarded exposure, suggesting that the changes were in fact due to unsupervised learning. The neural plasticity was concentrated in the medial HVAs and obeyed visual, rather than spatial, learning rules. In task mice only, we found a ramping reward prediction signal in anterior HVAs, potentially involved in supervised learning. Our neural results predict that unsupervised learning may accelerate subsequent task learning, a prediction which we validated with behavioral experiments.

    View Publication Page
    01/30/24 | Distributed fMRI dynamics predict distinct EEG rhythms across sleep and wakefulness.
    Leandro P. L. Jacob , Sydney M. Bailes , Stephanie D. Williams , Carsen Stringer , Laura D. Lewis
    bioRxiv. 2024 Jan 30:. doi: 10.1101/2024.01.29.577429

    The brain exhibits rich oscillatory dynamics that vary across tasks and states, such as the EEG oscillations that define sleep. These oscillations play critical roles in cognition and arousal, but the brainwide mechanisms underlying them are not yet described. Using simultaneous EEG and fast fMRI in subjects drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI dynamics predict alpha (8-12 Hz) and delta (1-4 Hz) rhythms. We predicted moment-by-moment EEG power from fMRI activity in held-out subjects, and found that information about alpha power was represented by a remarkably small set of regions, segregated in two distinct networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify distributed networks that predict delta and alpha rhythms, and establish a computational framework for investigating fMRI brainwide dynamics underlying EEG oscillations.

    View Publication Page
    01/03/24 | Diversification of small RNA pathways underlies germline RNA interference incompetence in wild Caenorhabditis elegans strains.
    Chou HT, Valencia F, Alexander JC, Bell AD, Deb D, Pollard DA, Paaby AB
    Genetics. 2024 Jan 3;226(1):. doi: 10.1093/genetics/iyad191

    The discovery that experimental delivery of dsRNA can induce gene silencing at target genes revolutionized genetics research, by both uncovering essential biological processes and creating new tools for developmental geneticists. However, the efficacy of exogenous RNA interference (RNAi) varies dramatically within the Caenorhabditis elegans natural population, raising questions about our understanding of RNAi in the lab relative to its activity and significance in nature. Here, we investigate why some wild strains fail to mount a robust RNAi response to germline targets. We observe diversity in mechanism: in some strains, the response is stochastic, either on or off among individuals, while in others, the response is consistent but delayed. Increased activity of the Argonaute PPW-1, which is required for germline RNAi in the laboratory strain N2, rescues the response in some strains but dampens it further in others. Among wild strains, genes known to mediate RNAi exhibited very high expression variation relative to other genes in the genome as well as allelic divergence and strain-specific instances of pseudogenization at the sequence level. Our results demonstrate functional diversification in the small RNA pathways in C. elegans and suggest that RNAi processes are evolving rapidly and dynamically in nature.

    View Publication Page
    03/18/24 | Dynamic 1D Search and Processive Nucleosome Translocations by RSC and ISW2 Chromatin Remodelers
    Jee Min Kim , Claudia C. Carcamo , Sina Jazani , Zepei Xie , Xinyu A. Feng , Matthew Poyton , Katie L. Holland , Jonathan B. Grimm , Luke D. Lavis , Taekjip Ha , Carl Wu
    eLife. 2024 Mar 18:. doi: 10.7554/eLife.91433

    Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.

    View Publication Page
    01/11/24 | Epigenetic priming of embryonic lineages in the mammalian epiblast
    Miquel Sendra , Katie McDole , Daniel Jimenez-Carretero , Juan de Dios Hourcade , Susana Temiño , Léo Guignard , Philipp J Keller , Fátima Sánchez-Cabo , Jorge N. Domínguez , Miguel Torres
    bioRxiv. 2024 Jan 11:. doi: 10.1101/2024.01.11.575188

    Understanding the diversification of mammalian cell lineages is an essential to embryonic development, organ regeneration and tissue engineering. Shortly after implantation in the uterus, the pluripotent cells of the mammalian epiblast generate the three germ layers: ectoderm, mesoderm and endoderm1. Although clonal analyses suggest early specification of epiblast cells towards particular cell lineages24, single-cell transcriptomes do not identify lineage-specific markers in the epiblast511 and thus, the molecular regulation of such specification remains unknow. Here, we studied the epigenetic landscape of single epiblast cells, which revealed lineage priming towards endoderm, ectoderm or mesoderm. Unexpectedly, epiblast cells with mesodermal priming show a strong signature for the endothelial/endocardial fate, suggesting early specification of this lineage aside from other mesoderm. Through clonal analysis and live imaging, we show that endothelial precursors show early lineage divergence from the rest of mesodermal derivatives. In particular, cardiomyocytes and endocardial cells show limited lineage relationship, despite being temporally and spatially co-recruited during gastrulation. Furthermore, analysing the live tracks of single cells through unsupervised classification of cell migratory activity, we found early behavioral divergence of endothelial precursors shortly after the onset of mesoderm migration towards the cardiogenic area. These results provide a new model for the phenotypically silent specification of mammalian cell lineages in pluripotent cells of the epiblast and modify current knowledge on the sequence and timing of cardiovascular lineages diversification.

    View Publication Page
    02/21/24 | Epigenetic repression of cFos supports sequential formation of distinct spatial memories.
    Andreas Franzelin , Paul J. Lamothe-Molina , Christine E. Gee , Andrey Formozov , Eric R Schreiter , Fabio Morellini , Thomas Glenn Oertner
    bioRxiv. 2024 Feb 21:. doi: 10.1101/2024.02.16.580703

    Expression of the immediate early gene cFos modifies the epigenetic landscape of activated neurons with downstream effects on synaptic plasticity. The production of cFos is inhibited by a long-lived isoform of another Fos family gene, ΔFosB. It has been speculated that this negative feedback mechanism may be critical for protecting episodic memories from being overwritten by new information. Here, we investigate the influence of ΔFosB inhibition on cFos expression and memory. Hippocampal neurons in slice culture produce more cFos on the first day of stimulation compared to identical stimulation on the following day. This downregulation affects all hippocampal subfields and requires histone deacetylation. Overexpression of ΔFosB in individual pyramidal neurons effectively suppresses cFos, indicating that accumulation of ΔFosB is the causal mechanism. Water maze training of mice over several days leads to accumulation of ΔFosB in granule cells of the dentate gyrus, but not in CA3 and CA1. Because the dentate gyrus is thought to support pattern separation and cognitive flexibility, we hypothesized that inhibiting the expression of ΔFosB would affect reversal learning, i.e., the ability to successively learn new platform locations in the water maze. The results indicate that pharmacological HDAC inhibition, which prevents cFos repression, impairs reversal learning, while learning and memory of the initial platform location remain unaffected. Our study supports the hypothesis that epigenetic mechanisms tightly regulate cFos expression in individual granule cells to orchestrate the formation of time-stamped memories.

    View Publication Page