Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

136 Janelia Publications

Showing 131-136 of 136 results
Your Criteria:
    Looger Lab
    11/10/10 | Toward the second generation of optogenetic tools.
    Knöpfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2010 Nov 10;30(45):14998-5004. doi: 10.1523/JNEUROSCI.4190-10.2010

    This mini-symposium aims to provide an integrated perspective on recent developments in optogenetics. Research in this emerging field combines optical methods with targeted expression of genetically encoded, protein-based probes to achieve experimental manipulation and measurement of neural systems with superior temporal and spatial resolution. The essential components of the optogenetic toolbox consist of two kinds of molecular devices: actuators and reporters, which respectively enable light-mediated control or monitoring of molecular processes. The first generation of genetically encoded calcium reporters, fluorescent proteins, and neural activators has already had a great impact on neuroscience. Now, a second generation of voltage reporters, neural silencers, and functionally extended fluorescent proteins hold great promise for continuing this revolution. In this review, we will evaluate and highlight the limitations of presently available optogenic tools and discuss where these technologies and their applications are headed in the future.

    View Publication Page
    Looger Lab
    08/01/11 | Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo.
    Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LL, Denk W, Kerr JN
    Nature Neuroscience. 2011 Aug;14(8):1089-93. doi: 10.1038/nn.2879

    Multiphoton imaging (MPI) is widely used for recording activity simultaneously from many neurons in superficial cortical layers in vivo. We combined regenerative amplification multiphoton microscopy (RAMM) with genetically encoded calcium indicators to extend MPI of neuronal population activity into layer 5 (L5) of adult mouse somatosensory cortex. We found that this approach could be used to record and quantify spontaneous and sensory-evoked activity in populations of L5 neuronal somata located as much as 800 μm below the pia. In addition, we found that RAMM could be used to simultaneously image activity from large (80) populations of apical dendrites and follow these dendrites down to their somata of origin.

    View Publication Page
    Looger LabLeonardo Lab
    07/03/13 | Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina.
    Borghuis BG, Marvin JS, Looger LL, Demb JB
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 2013 Jul 3;33(27):10972-85. doi: 10.1523/JNEUROSCI.1241-13.2013

    Alpha/Y-type retinal ganglion cells encode visual information with a receptive field composed of nonlinear subunits. This nonlinear subunit structure enhances sensitivity to patterns composed of high spatial frequencies. The Y-cell’s subunits are the presynaptic bipolar cells, but the mechanism for the nonlinearity remains incompletely understood. We investigated the synaptic basis of the subunit nonlinearity by combining whole-cell recording of mouse Y-type ganglion cells with two-photon fluorescence imaging of a glutamate sensor (iGluSnFR) expressed on their dendrites and throughout the inner plexiform layer. A control experiment designed to assess iGluSnFR’s dynamic range showed that fluorescence responses from Y-cell dendrites increased proportionally with simultaneously recorded excitatory current. Spatial resolution was sufficient to readily resolve independent release at intermingled ON and OFF bipolar terminals. iGluSnFR responses at Y-cell dendrites showed strong surround inhibition, reflecting receptive field properties of presynaptic release sites. Responses to spatial patterns located the origin of the Y-cell nonlinearity to the bipolar cell output, after the stage of spatial integration. The underlying mechanism differed between OFF and ON pathways: OFF synapses showed transient release and strong rectification, whereas ON synapses showed relatively sustained release and weak rectification. At ON synapses, the combination of fast release onset with slower release offset explained the nonlinear response of the postsynaptic ganglion cell. Imaging throughout the inner plexiform layer, we found transient, rectified release at the central-most levels, with increasingly sustained release near the borders. By visualizing glutamate release in real time, iGluSnFR provides a powerful tool for characterizing glutamate synapses in intact neural circuits.

    View Publication Page
    Jayaraman LabLooger LabSvoboda LabSchreiter LabGENIE
    07/18/13 | Ultrasensitive fluorescent proteins for imaging neuronal activity.
    Chen T, Wardill TJ, Sun Y, Pulvar SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS
    Nature. 2013 Jul 18;499:295-300. doi: 10.1038/nature12354

    Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

    View Publication Page
    Looger LabGENIE
    04/10/23 | Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
    Vincent Magloire , Leonid P. Savtchenko , Sergyi Sylantyev , Thomas P. Jensen , Nicholas Cole , Jonathan S. Marvin , Loren L. Looger , Dimitri M. Kullmann , Matthew C. Walker , Ivan Pavlov , Dmitri A. Rusakov
    Current Biology. 2023 Apr 10;33(7):1249. doi: 10.1016/j.cub.2023.02.051

    Mechanisms that entrain and drive rhythmic epileptiform discharges remain debated. Traditionally, this quest has been focusing on interneuronal networks driven by GABAergic connections that activate synaptic or extrasynaptic receptors. However, synchronised interneuronal discharges could also trigger a transient elevation of extracellular GABA across the tissue volume, thus raising tonic GABAA receptor conductance (Gtonic) in multiple cells. Here, we use patch-clamp GABA ‘sniffer’ and optical GABA sensor to show that periodic epileptiform discharges are preceded by region-wide, rising waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to mechanistic principles underpinning this relationship. We validate this hypothesis using simultaneous patch-clamp recordings from multiple nerve cells, selective optogenetic stimulation of fast-spiking interneurons. Critically, we manipulate GABA uptake to suppress extracellular GABA waves but not synaptic GABAergic transmission, which shows a clear effect on rhythm generation. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA actions in pacing regenerative rhythmic activity in brain networks.

    View Publication Page
    Looger Lab
    03/28/13 | ß-synuclein aggregates and induces neurodegeneration in dopaminergic neurons.
    Taschenberger G, Toloe J, Tereshchenko J, Akerboom J, Wales P, Benz R, Becker S, Outeiro T, Looger L, Bähr M, Zweckstetter M, Kügler S
    Annals of Neurology. 2013 Mar 28;74(1):109-18. doi: 10.1002/ana.23905

    Objective: While the contribution of α-Synuclein to neurodegeneration in Parkinson’s disease is well accepted, the putative impact of its close homologue, β-Synuclein, is enigmatic. β-Synuclein is widely expressed throughout the central nervous system as is α-Synuclein, but the physiological functions of both proteins remain unknown. Recent findings supported the view that β-Synuclein can act as an ameliorating regulator of α-Synuclein-induced neurotoxicity, having neuroprotective rather than neurodegenerative capabilities, and being non-aggregating due to absence of most part of the aggregation-promoting NAC domain. However, a mutation of β-Synuclein linked to dementia with Lewy bodies rendered the protein neurotoxic in transgenic mice and fibrillation of β-Synuclein has been demonstrated in vitro. Methods / Results: Supporting the hypothesis that β-Synuclein can act as a neurodegeneration-inducing factor we now demonstrate that wild-type β-Synuclein is neurotoxic for cultured primary neurons. Furthermore, β-Synuclein formed proteinase K resistant aggregates in dopaminergic neurons in vivo, leading to pronounced and progressive neurodegeneration in rats. Expression of β-Synuclein caused mitochondrial fragmentation, but this fragmentation did not render mitochondria non-functional in terms of ion handling and respiration even in late stages of neurodegeneration. A comparison of the neurodegenerative effects induced by α-, β-, and γ-Synuclein revealed that β-Synuclein was eventually as neurotoxic as α-Synuclein for nigral dopaminergic neurons, while γ-Synuclein proved to be non-toxic and had very low aggregation propensity. Interpretation: Our results suggest that the role of β-Synuclein as a putative modulator of neuropathology in aggregopathies like Parkinson’s disease and dementia with Lewy bodies needs to be revisited. ANN NEUROL 2013. © 2013 American Neurological Association.

    View Publication Page