Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

88 Janelia Publications

Showing 21-30 of 88 results
Your Criteria:
    02/22/24 | CSPP1 stabilizes microtubules by capping both plus and minus ends.
    Wang Z, Wang W, Liu S, Yang F, Liu X, Hua S, Zhu L, Xu A, Hill DL, Wang D, Jiang K, Lippincott-Schwartz J, Liu X, Yao X
    Journal of Molecular Cell Biology. 2024 Feb 22:. doi: 10.1093/jmcb/mjae007

    Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting the polymerization. Importantly, CSPP1-bound MTs were resistant to MCAK-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.

    View Publication Page
    05/17/19 | De novo design of tunable, pH-driven conformational changes.
    Boyken SE, Benhaim MA, Busch F, Jia M, Back MJ, Choi H, Klima JC, Chen Z, Walkey C, Mileant A, Sahasrabuddhe A, Wei KY, Hodge EA, Byron S, Quijano-Rubio A, Sankaran B, King NP, Lippincott-Schwartz J, Wysocki VH, et al
    Science. 2019 May 17;364(6441):658-64. doi: 10.1126/science.aav7897

    The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.

    View Publication Page
    04/07/17 | Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia.
    Allison R, Edgar JR, Pearson G, Rizo T, Newton T, Günther S, Berner F, Hague J, Connell JW, Winkler J, Lippincott-Schwartz J, Beetz C, Winner B, Reid E
    The Journal of Cell Biology. 2017 Apr 07;216(5):1337-55. doi: 10.1083/jcb.201609033

    Contacts between endosomes and the endoplasmic reticulum (ER) promote endosomal tubule fission, but the mechanisms involved and consequences of tubule fission failure are incompletely understood. We found that interaction between the microtubule-severing enzyme spastin and the ESCRT protein IST1 at ER-endosome contacts drives endosomal tubule fission. Failure of fission caused defective sorting of mannose 6-phosphate receptor, with consequently disrupted lysosomal enzyme trafficking and abnormal lysosomal morphology, including in mouse primary neurons and human stem cell-derived neurons. Consistent with a role for ER-mediated endosomal tubule fission in lysosome function, similar lysosomal abnormalities were seen in cellular models lacking the WASH complex component strumpellin or the ER morphogen REEP1. Mutations in spastin, strumpellin, or REEP1 cause hereditary spastic paraplegia (HSP), a disease characterized by axonal degeneration. Our results implicate failure of the ER-endosome contact process in axonopathy and suggest that coupling of ER-mediated endosomal tubule fission to lysosome function links different classes of HSP proteins, previously considered functionally distinct, into a unifying pathway for axonal degeneration.

    View Publication Page
    04/07/07 | Developing photo activated localization microscopy
    George H. Patterson , Eric Betzig , Jennifer Lippincott-Schwartz , Harald F. Hess
    4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2007 Apr 15:. doi: 10.1109/isbi.2007.357008

    In conventional biological imaging, diffraction places a limit on the minimal xy distance at which two marked objects can be discerned. Consequently, resolution of target molecules within cells is typically coarser by two orders of magnitude than the molecular scale at which the proteins are spatially distributed. Photoactivated localization microscopy (PALM) optically resolves selected subsets of protect fluorescent probes within cells at mean separations of <25 nanometers. It involves serial photoactivation and subsequent photobleaching of numerous sparse subsets of photoactivated fluorescent protein molecules. Individual molecules are localized at near molecular resolution by determining their centers of fluorescent emission via a statistical fit of their point-spread-function. The position information from all subsets is then assembled into a super-resolution image, in which individual fluorescent molecules are isolated at high molecular densities. In this paper, some of the limitations for PALM imaging under current experimental conditions are discussed.

    View Publication Page
    02/06/16 | Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo.
    Rikhy R, Mavrakis M, Lippincott-Schwartz J
    Biology open. 2015;4(3):301-11. doi: 10.1242/bio.20149936

    The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.

    View Publication Page
    03/31/20 | ER membranes exhibit phase behavior at sites of organelle contact.
    King C, Sengupta P, Seo AY, Lippincott-Schwartz J
    Proceedings of the National Academy of Sciences of the United States of America. 2020 March 31;117(13):7225-7235. doi: 10.1073/pnas.1910854117

    The endoplasmic reticulum (ER) is the site of synthesis of secretory and membrane proteins and contacts every organelle of the cell, exchanging lipids and metabolites in a highly regulated manner. How the ER spatially segregates its numerous and diverse functions, including positioning nanoscopic contact sites with other organelles, is unclear. We demonstrate that hypotonic swelling of cells converts the ER and other membrane-bound organelles into micrometer-scale large intracellular vesicles (LICVs) that retain luminal protein content and maintain contact sites with each other through localized organelle tethers. Upon cooling, ER-derived LICVs phase-partition into microscopic domains having different lipid-ordering characteristics, which is reversible upon warming. Ordered ER lipid domains mark contact sites with ER and mitochondria, lipid droplets, endosomes, or plasma membrane, whereas disordered ER lipid domains mark contact sites with lysosomes or peroxisomes. Tethering proteins concentrate at ER–organelle contact sites, allowing time-dependent behavior of lipids and proteins to be studied at these sites. These findings demonstrate that LICVs provide a useful model system for studying the phase behavior and interactive properties of organelles in intact cells.

    View Publication Page
    01/01/22 | ER proteins decipher the tubulin code to regulate organelle distribution.
    Zheng P, Obara CJ, Szczesna E, Nixon-Abell J, Mahalingan KK, Roll-Mecak A, Lippincott-Schwartz J, Blackstone C
    Nature. 2022 Jan 01;601(7891):132-138. doi: 10.1038/s41586-021-04204-9

    Organelles move along differentially modified microtubules to establish and maintain their proper distributions and functions. However, how cells interpret these post-translational microtubule modification codes to selectively regulate organelle positioning remains largely unknown. The endoplasmic reticulum (ER) is an interconnected network of diverse morphologies that extends promiscuously throughout the cytoplasm, forming abundant contacts with other organelles. Dysregulation of endoplasmic reticulum morphology is tightly linked to neurologic disorders and cancer. Here we demonstrate that three membrane-bound endoplasmic reticulum proteins preferentially interact with different microtubule populations, with CLIMP63 binding centrosome microtubules, kinectin (KTN1) binding perinuclear polyglutamylated microtubules, and p180 binding glutamylated microtubules. Knockout of these proteins or manipulation of microtubule populations and glutamylation status results in marked changes in endoplasmic reticulum positioning, leading to similar redistributions of other organelles. During nutrient starvation, cells modulate CLIMP63 protein levels and p180-microtubule binding to bidirectionally move endoplasmic reticulum and lysosomes for proper autophagic responses.

    View Publication Page
    04/29/21 | ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER.
    Weigel AV, Chang C, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J
    Cell. 2021 Apr 29;184(9):2412. doi: 10.1016/j.cell.2021.03.035

    Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.

    View Publication Page
    06/11/19 | Fate plasticity and reprogramming in genetically distinct populations of leucophores.
    Lewis VM, Saunders LM, Larson TA, Bain EJ, Sturiale SL, Gur D, Chowdhury S, Flynn JD, Allen MC, Deheyn DD, Lee JC, Simon JA, Lippincott-Schwartz J, Raible DW, Parichy DM
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Jun 11;116(24):11806-11. doi: 10.1073/pnas.1901021116

    Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of fishes, including the zebrafish , we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.

    View Publication Page
    02/21/24 | Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics.
    Dou Z, Liu R, Gui P, Fu C, Lippincott-Schwartz J, Yao X, Liu X
    Molecular Biology of the Cell. 2024 Feb 21:mbcE23090379. doi: 10.1091/mbc.E23-09-0379

    Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET). Complementary fluorescent protein molecules were first used to visualize dimerization followed by FRET measurements. Using FC- FRET, we visualized centromere CENP-SXTW tetramer assembly dynamics in live cells, and dimeric interactions between CENP-TW dimer and kinetochore protein Spc24/25 dimer in dividing cells. We further delineated the interactions of monomeric CENP-T with Spc24/25 dimer in dividing cells. Surprisingly, our analyses revealed critical role of CDK1 kinase activity in the initial recruitment of Spc24/25 by CENP-T. However, interactions between CENP-T and Spc24/25 during chromosome segregation is independent of CDK1. Thus, FC-FRET provides a unique approach to delineate spatiotemporal dynamics of trimerized and tetramerized proteins at nanometer scale and establishes a platform to report the precise regulation of multimeric protein interactions in space and time in live cells.

    View Publication Page