Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

13 Janelia Publications

Showing 1-10 of 13 results
Your Criteria:
    06/01/13 | A Schnurri/Mad/Medea complex attenuates the dorsal-twist gradient readout at vnd.
    Crocker J, Erives A
    Dev Biol. 2013 Jun 01;378(1):64-72. doi: 10.1016/j.ydbio.2013.03.002

    Morphogen gradients are used in developing embryos, where they subdivide a field of cells into territories characterized by distinct cell fate potentials. Such systems require both a spatially-graded distribution of the morphogen, and an ability to encode different responses at different target genes. However, the potential for different temporal responses is also present because morphogen gradients typically provide temporal cues, which may be a potential source of conflict. Thus, a low threshold response adapted for an early temporal onset may be inappropriate when the desired spatial response is a spatially-limited, high-threshold expression pattern. Here, we identify such a case with the Drosophila vnd locus, which is a target of the dorsal (dl) nuclear concentration gradient that patterns the dorsal/ventral (D/V) axis of the embryo. The vnd gene plays a critical role in the "ventral dominance" hierarchy of vnd, ind, and msh, which individually specify distinct D/V neural columnar fates in increasingly dorsal ectodermal compartments. The role of vnd in this regulatory hierarchy requires early temporal expression, which is characteristic of low-threshold responses, but its specification of ventral neurogenic ectoderm demands a relatively high-threshold response to dl. We show that the Neurogenic Ectoderm Enhancer (NEE) at vnd takes additional input from the complementary Dpp gradient via a conserved Schnurri/Mad/Medea silencer element (SSE) unlike NEEs at brk, sog, rho, and vn. These results show how requirements for conflicting temporal and spatial responses to the same gradient can be solved by additional inputs from complementary gradients.

    View Publication Page
    06/01/13 | APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree.
    Xiao H, Peng H
    Bioinformatics (Oxford, England). 2013 Jun 1;29:1448-54. doi: 10.1093/bioinformatics/btt170

    Tracing of neuron morphology is an essential technique in computational neuroscience. However, despite a number of existing methods, few open-source techniques are completely or sufficiently automated and at the same time are able to generate robust results for real 3D microscopy images.

    View Publication Page
    06/05/13 | ASI regulates satiety quiescence in C. elegans.
    Gallagher T, Kim J, Oldenbroek M, Kerr R, You Y
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 2013 Jun 5;33(23):9716-24. doi: 10.1523/JNEUROSCI.4493-12.2013

    In Caenorhabditis elegans, satiety quiescence mimics behavioral aspects of satiety and postprandial sleep in mammals. On the basis of calcium-imaging, genetics, and behavioral studies, here we report that a pair of amphid neurons, ASI, is activated by nutrition and regulates worms’ behavioral states specifically promoting satiety quiescence; ASI inhibits the switch from quiescence to dwelling (a browsing state) and accelerates the switch from dwelling to quiescence. The canonical TGFβ pathway, whose ligand is released from ASI, regulates satiety quiescence. The mutants of a ligand, a receptor and SMADs in the TGFβ pathway all eat more and show less quiescence than wild-type. The TGFβ receptor in downstream neurons RIM and RIC is sufficient for worms to exhibit satiety quiescence, suggesting neuronal connection from ASI to RIM and RIC is essential for feeding regulation through the TGFβ pathway. ASI also regulates satiety quiescence partly through cGMP signaling; restoring cGMP signaling in ASI rescues the satiety quiescence defect of cGMP signaling mutants. From these results, we propose that TGFβ and cGMP pathways in ASI connect nutritional status to promotion of satiety quiescence, a sleep-like behavioral state.

    View Publication Page
    06/17/13 | Decoupled roles for the atypical, bifurcated binding pocket of the ybfF hydrolase.
    Ellis EE, Adkins CT, Galovska NM, Lavis LD, Johnson RJ
    Chembiochem : A European Journal of Chemical Biology. 2013 Jun 17;14(9):1134-44. doi: 10.1002/cbic.201300085

    Serine hydrolases have diverse intracellular substrates, biological functions, and structural plasticity, and are thus important for biocatalyst design. Amongst serine hydrolases, the recently described ybfF enzyme family are promising novel biocatalysts with an unusual bifurcated substrate-binding cleft and the ability to recognize commercially relevant substrates. We characterized in detail the substrate selectivity of a novel ybfF enzyme from Vibrio cholerae (Vc-ybfF) by using a 21-member library of fluorogenic ester substrates. We assigned the roles of the two substrate-binding clefts in controlling the substrate selectivity and folded stability of Vc-ybfF by comprehensive substitution analysis. The overall substrate preference of Vc-ybfF was for short polar chains, but it retained significant activity with a range of cyclic and extended esters. This broad substrate specificity combined with the substitutional analysis demonstrates that the larger binding cleft controls the substrate specificity of Vc-ybfF. Key selectivity residues (Tyr116, Arg120, Tyr209) are also located at the larger binding pocket and control the substrate specificity profile. In the structure of ybfF the narrower binding cleft contains water molecules prepositioned for hydrolysis, but based on substitution this cleft showed only minimal contribution to catalysis. Instead, the residues surrounding the narrow binding cleft and at the entrance to the binding pocket contributed significantly to the folded stability of Vc-ybfF. The relative contributions of each cleft of the binding pocket to the catalytic activity and folded stability of Vc-ybfF provide a valuable map for designing future biocatalysts based on the ybfF scaffold.

    View Publication Page
    06/08/13 | Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila.
    Bräcker LB, Siju KP, Varela N, Aso Y, Zhang M, Hein I, Vasconcelos ML, Grunwald Kadow IC
    Current Biology. 2013 Jul 8;23(13):1228-34. doi: 10.1016/j.cub.2013.05.029

    Internal state as well as environmental conditions influence choice behavior. The neural circuits underpinning state-dependent behavior remain largely unknown. Carbon dioxide (CO2) is an important olfactory cue for many insects, including mosquitoes, flies, moths, and honeybees [1]. Concentrations of CO2 higher than 0.02% above atmospheric level trigger a strong innate avoidance in the fly Drosophila melanogaster [2, 3]. Here, we show that the mushroom body (MB), a brain center essential for olfactory associative memories [4-6] but thought to be dispensable for innate odor processing [7], is essential for CO2 avoidance behavior only in the context of starvation or in the context of a food-related odor. Consistent with this, CO2 stimulation elicits Ca(2+) influx into the MB intrinsic cells (Kenyon cells: KCs) in vivo. We identify an atypical projection neuron (bilateral ventral projection neuron, biVPN) that connects CO2 sensory input bilaterally to the MB calyx. Blocking synaptic output of the biVPN completely abolishes CO2 avoidance in food-deprived flies, but not in fed flies. These findings show that two alternative neural pathways control innate choice behavior, and they are dependent on the animal’s internal state. In addition, they suggest that, during innate choice behavior, the MB serves as an integration site for internal state and olfactory input.

    View Publication Page
    Looger Lab
    06/01/13 | Genetically encoded calcium indicators and astrocyte calcium microdomains.
    Tong X, Shigetomi E, Looger LL, Khakh BS
    The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry. 2013 Jun;19(3):274-91. doi: 10.1177/1073858412468794

    The discovery of intracellular Ca(2+) signals within astrocytes has changed our view of how these ubiquitous cells contribute to brain function. Classically thought merely to serve supportive functions, astrocytes are increasingly thought to respond to, and regulate, neurons. The use of organic Ca(2+) indicator dyes such as Fluo-4 and Fura-2 has proved instrumental in the study of astrocyte physiology. However, progress has recently been accelerated by the use of cytosolic and membrane targeted genetically encoded calcium indicators (GECIs). Herein, we review these recent findings, discuss why studying astrocyte Ca(2+) signals is important to understand brain function, and summarize work that led to the discovery of TRPA1 channel-mediated near-membrane Ca(2+) signals in astrocytes and their indirect neuromodulatory roles at inhibitory synapses in the CA1 stratum radiatum region of the hippocampus. We suggest that the use of membrane-targeted and cytosolic GECIs holds great promise to explore the diversity of Ca(2+) signals within single astrocytes and also to study diversity of function for astrocytes in different parts of the brain.

    View Publication Page
    06/07/13 | Imaging morphogenesis: technological advances and biological insights.
    Keller PJ
    Science. 2013 Jun 7;340(6137):1234168. doi: 10.1126/science.1234168

    Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.

    Science Profile: A Research Career in Focus

    View Publication Page
    06/15/13 | Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy.
    Baumann AA, Benoit JB, Michalkova V, Mireji PO, Attardo GM, Moulton JK, Wilson TG, Aksoy S
    Molecular and Cellular Endocrinology. 2013 Jun 15;372(1-2):30-41. doi: 10.1016/j.mce.2013.02.019

    Tsetse flies are viviparous insects that nurture a single intrauterine progeny per gonotrophic cycle. The developing larva is nourished by the lipid-rich, milk-like secretions from a modified female accessory gland (milk gland). An essential feature of the lactation process involves lipid mobilization for incorporation into the milk. In this study, we examined roles for juvenile hormone (JH) and insulin/IGF-like (IIS) signaling pathways during tsetse pregnancy. In particular, we examined the roles for these pathways in regulating lipid homeostasis during transitions between non-lactating (dry) and lactating periods. The dry period occurs over the course of oogenesis and embryogenesis, while the lactation period spans intrauterine larvigenesis. Genes involved in the JH and IIS pathways were upregulated during dry periods, correlating with lipid accumulation between bouts of lactation. RNAi suppression of Forkhead Box Sub Group O (FOXO) expression impaired lipolysis during tsetse lactation and reduced fecundity. Similar reduction of the JH receptor Methoprene tolerant (Met), but not its paralog germ cell expressed (gce), reduced lipid accumulation during dry periods, indicating functional divergence between Met and gce during tsetse reproduction. Reduced lipid levels following Met knockdown led to impaired fecundity due to inadequate fat reserves at the initiation of milk production. Both the application of the JH analog (JHA) methoprene and injection of insulin into lactating females increased stored lipids by suppressing lipolysis and reduced transcripts of lactation-specific genes, leading to elevated rates of larval abortion. To our knowledge, this study is the first to address the molecular physiology of JH and IIS in a viviparous insect, and specifically to provide a role for JH signaling through Met in the regulation of lipid metabolism during insect lactation.

    View Publication Page
    Riddiford Lab
    06/11/13 | Microarrays reveal discrete phases in juvenile hormone regulation of mosquito reproduction.
    Riddiford LM
    Proceedings of the National Academy of Sciences of the United States of America. 2013 Jun 11;110(24):9623-4. doi: 10.1073/pnas.1307487110
    Sternson Lab
    06/01/13 | Neural circuits and motivational processes for hunger.
    Sternson SM, Betley JN, Cao ZF
    Current Opinion in Neurobiology. 2013 Jun;23(3):353-60. doi: 10.1016/j.conb.2013.04.006

    How does an organism’s internal state direct its actions? At one moment an animal forages for food with acrobatic feats such as tree climbing and jumping between branches. At another time, it travels along the ground to find water or a mate, exposing itself to predators along the way. These behaviors are costly in terms of energy or physical risk, and the likelihood of performing one set of actions relative to another is strongly modulated by internal state. For example, an animal in energy deficit searches for food and a dehydrated animal looks for water. The crosstalk between physiological state and motivational processes influences behavioral intensity and intent, but the underlying neural circuits are poorly understood. Molecular genetics along with optogenetic and pharmacogenetic tools for perturbing neuron function have enabled cell type-selective dissection of circuits that mediate behavioral responses to physiological state changes. Here, we review recent progress into neural circuit analysis of hunger in the mouse by focusing on a starvation-sensitive neuron population in the hypothalamus that is sufficient to promote voracious eating. We also consider research into the motivational processes that are thought to underlie hunger in order to outline considerations for bridging the gap between homeostatic and motivational neural circuits.

    View Publication Page