Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

37 Janelia Publications

Showing 21-30 of 37 results
Your Criteria:
    Singer Lab
    01/01/16 | Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes.
    Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N, Ovryn B, Bathe M, Singer RH
    eLife. 2016;5:. doi: 10.7554/eLife.10415

    Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.

    View Publication Page
    03/08/19 | Neural evolution of context-dependent fly song.
    Ding Y, Lillvis JL, Cande J, Berman GJ, Arthur BJ, Long X, Xu M, Dickson BJ, Stern DL
    Current Biology : CB. 2019 Mar 08;29(7):1089-99. doi: 10.1016/j.cub.2019.02.019

    It is unclear where in the nervous system evolutionary changes tend to occur. To localize the source of neural evolution that has generated divergent behaviors, we developed a new approach to label and functionally manipulate homologous neurons across Drosophila species. We examined homologous descending neurons that drive courtship song in two species that sing divergent song types and localized relevant evolutionary changes in circuit function downstream of the intrinsic physiology of these descending neurons. This evolutionary change causes different species to produce divergent motor patterns in similar social contexts. Artificial stimulation of these descending neurons drives multiple song types, suggesting that multifunctional properties of song circuits may facilitate rapid evolution of song types.

    View Publication Page
    Truman LabSinger Lab
    03/26/19 | Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS.
    Lacin H, Chen H, Long X, Singer RH, Lee T, Truman JW
    Elife. 2019 Mar 26;8:. doi: 10.7554/eLife.43701

    The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.

    View Publication Page
    Singer Lab
    05/25/15 | Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking.
    Smith CS, Preibisch S, Joseph A, Abrahamsson S, Rieger B, Myers E, Singer RH, Grunwald D
    Journal of Cell Biology. 2015 May 25;209(4):609-19. doi: 10.1083/jcb.201411032

    Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that β-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 µm away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization.

    View Publication Page
    11/02/17 | Nuclear microenvironments modulate transcription from low-affinity enhancers.
    Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH, Stern DL, Crocker J
    eLife. 2017 Nov 02;6:. doi: 10.7554/eLife.28975

    Transcription factors bind low-affinity DNA sequences for only short durations. It is not clear how brief, low-affinity interactions can drive efficient transcription. Here we report that the transcription factor Ultrabithorax (Ubx) utilizes low-affinity binding sites in the Drosophila melanogastershavenbaby (svb) locus and related enhancers in nuclear microenvironments of high Ubx concentrations. Related enhancers colocalize to the same microenvironments independently of their chromosomal location, suggesting that microenvironments are highly differentiated transcription domains. Manipulating the affinity of svb enhancers revealed an inverse relationship between enhancer affinity and Ubx concentration required for transcriptional activation. The Ubx cofactor, Homothorax (Hth), was co-enriched with Ubx near enhancers that require Hth, even though Ubx and Hth did not co-localize throughout the nucleus. Thus, microenvironments of high local transcription factor and cofactor concentrations could help low-affinity sites overcome their kinetic inefficiency. Mechanisms that generate these microenvironments could be a general feature of eukaryotic transcriptional regulation.

    View Publication Page
    Singer Lab
    10/23/14 | Photoswitchable red fluorescent protein with a large stokes shift.
    Piatkevich KD, English BP, Malashkevich VN, Xiao H, Almo SC, Singer RH, Verkhusha VV
    Chemistry & Biology. 2014 Oct 23;21(10):1402-14. doi: 10.1016/j.chembiol.2014.08.010

    A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.

    View Publication Page
    Harris LabSinger LabTranscription ImagingFly Functional Connectome
    06/05/17 | Quantitative mRNA imaging throughout the entire Drosophila brain.
    Long X, Colonell J, Wong AM, Singer RH, Lionnet T
    Nature Methods. 2017 Jun 05;14(7):703-6. doi: 10.1038/nmeth.4309

    We describe a fluorescence in situ hybridization method that permits detection of the localization and abundance of single mRNAs (smFISH) in cleared whole-mount adult Drosophila brains. The approach is rapid and multiplexable and does not require molecular amplification; it allows facile quantification of mRNA expression with subcellular resolution on a standard confocal microscope. We further demonstrate single-mRNA detection across the entire brain using a custom Bessel beam structured illumination microscope (BB-SIM).

    View Publication Page
    09/15/16 | Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis.
    Zhang Z, English BP, Grimm JB, Kazane SA, Hu W, Tsai A, Inouye C, You C, Piehler J, Schultz PG, Lavis LD, Revyakin A, Tjian R
    Genes and Development. 2016 Sep 15;30:2106-18. doi: 10.1101/gad.285395.116

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.

    View Publication Page
    09/25/19 | Rational design of fluorogenic and spontaneously blinking labels for super-resolution imaging.
    Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A, Falco N, Grimm JB, Tkachuk AN, Wu C, Lippincott-Schwartz J, Singer RH, Lavis LD
    ACS Central Science. 2019 Sep 25;5(9):1602-1613. doi: 10.1021/acscentsci.9b00676

    Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds-ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant () is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore-Janelia Fluor 526 (JF)-with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.

    View Publication Page
    04/22/11 | Real-time observation of transcription initiation and elongation on an endogenous yeast gene.
    Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH
    Science. 2011 Apr 22;332(6028):475-8. doi: 10.1126/science.1202142

    Cellular messenger RNA levels are achieved by the combinatorial complexity of factors controlling transcription, yet the small number of molecules involved in these pathways fluctuates stochastically. It has not yet been experimentally possible to observe the activity of single polymerases on an endogenous gene to elucidate how these events occur in vivo. Here, we describe a method of fluctuation analysis of fluorescently labeled RNA to measure dynamics of nascent RNA–including initiation, elongation, and termination–at an active yeast locus. We find no transcriptional memory between initiation events, and elongation speed can vary by threefold throughout the cell cycle. By measuring the abundance and intranuclear mobility of an upstream transcription factor, we observe that the gene firing rate is directly determined by trans-activating factor search times.

    View Publication Page