Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

186 Janelia Publications

Showing 81-90 of 186 results
Your Criteria:
    03/13/18 | Genetic reagents for making split-GAL4 lines in Drosophila.
    Dionne H, Hibbard KL, Cavallaro A, Kao J, Rubin GM
    Genetics . 2018 March;209(1):31-5. doi: 10.1101/197509

    The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2,800 transgenic lines for use with the split-GAL4 intersectional method.

    View Publication Page
    Truman LabRiddiford Lab
    05/18/17 | Genetic tools to study juvenile hormone action in Drosophila.
    Baumann AA, Texada MJ, Chen H, Etheredge JN, Miller DL, Picard S, Warner RD, Truman JW, Riddiford LM
    Scientific Reports. 2017 May 18;7:2132. doi: 10.1038/s41598-017-02264-4

    The insect juvenile hormone receptor is a basic helix-loop-helix (bHLH), Per-Arnt-Sim (PAS) domain protein, a novel type of hormone receptor. In higher flies like Drosophila, the ancestral receptor germ cell-expressed (gce) gene has duplicated to yield the paralog Methoprene-tolerant (Met). These paralogous receptors share redundant function during development but play unique roles in adults. Some aspects of JH function apparently require one receptor or the other. To provide a foundation for studying JH receptor function, we have recapitulated endogenous JH receptor expression with single cell resolution. Using Bacteria Artificial Chromosome (BAC) recombineering and a transgenic knock-in, we have generated a spatiotemporal expressional atlas of Metand gce throughout development. We demonstrate JH receptor expression in known JH target tissues, in which temporal expression corresponds with periods of hormone sensitivity. Larval expression largely supports the notion of functional redundancy. Furthermore, we provide the neuroanatomical distribution of JH receptors in both the larval and adult central nervous system, which will serve as a platform for future studies regarding JH action on insect behavior.

    View Publication Page
    Looger LabSchreiter Lab
    08/01/17 | Genetically encoded biosensors.
    Marvin JS, Looger LL, Lee RT, Schreiter ER
    USPTO. 2017 Aug 01;B2:

    The present disclosure provides, inter alia, genetically encoded recombinant peptide biosensors comprising analyte-binding framework portions and signaling portions, wherein the signaling portions are present within the framework portions at sites or amino acid positions that undergo a conformational change upon interaction of the framework portion with an analyte.

    View Publication Page
    09/21/17 | Genomic probes.
    Singer RH, Deng W, Lionnet T
    USPTO. 2017 Sep 21;A1:

    Labeled probes, and methods of use thereof, comprise a Cas polypeptide conjugated to gRNA that is specific for target nucleic acid sequences, including genomic DNA sequences. The probes and methods can be used to label nucleic acid sequences without global DNA denaturation. The presently-disclosed subject matter meets some or all of the above identified needs, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

    View Publication Page
    03/28/17 | Heuristic rules underlying dragonfly prey selection and interception.
    Lin H, Leonardo A
    Current Biology : CB. 2017 Mar 28;27(8):1124-37. doi: 10.1016/j.cub.2017.03.010

    Animals use rules to initiate behaviors. Such rules are often described as triggers that determine when behavior begins. However, although less explored, these selection rules are also an opportunity to establish sensorimotor constraints that influence how the behavior ends. These constraints may be particularly significant in influencing success in prey capture. Here we explore this in dragonfly prey interception. We found that in the moments leading up to takeoff, perched dragonflies employ a series of sensorimotor rules that determine the time of takeoff and increase the probability of successful capture. First, the dragonfly makes a head saccade followed by smooth pursuit movements to orient its direction-of-gaze at potential prey. Second, the dragonfly assesses whether the prey's angular size and speed co-vary within a privileged range. Finally, the dragonfly times the moment of its takeoff to a prediction of when the prey will cross the zenith. Each of these processes serves a purpose. The angular size-speed criteria biases interception flights to catchable prey, while the head movements and the predictive takeoff ensure flights begin with the prey visually fixated and directly overhead-the key parameters that underlie interception steering. Prey that do not elicit takeoff generally fail at least one of the criterion, and the loss of prey fixation or overhead positioning during flight is strongly correlated with terminated flights. Thus from an abundance of potential targets, the dragonfly selects a stereotyped set of takeoff conditions based on the prey and body states most likely to end in successful capture.

    View Publication Page
    05/09/17 | How to make a worm twitch.
    Keller PJ
    Biophysical Journal. 2017 May 09;112(9):1737-1738. doi: 10.1016/j.bpj.2017.03.035
    Singer Lab
    03/07/17 | Imaging mRNA and protein interactions within neurons.
    Eliscovich C, Shenoy SM, Singer RH
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Mar 07;114(10):E1875-E1884. doi: 10.1073/pnas.1621440114

    RNA-protein interactions are essential for proper gene expression regulation, particularly in neurons with unique spatial constraints. Currently, these interactions are defined biochemically, but a method is needed to evaluate them quantitatively within morphological context. Colocalization of two-color labels using wide-field microscopy is a method to infer these interactions. However, because of chromatic aberrations in the objective lens, this approach lacks the resolution to determine whether two molecules are physically in contact or simply nearby by chance. Here, we developed a robust super registration methodology that corrected the chromatic aberration across the entire image field to within 10 nm, which is capable of determining whether two molecules are physically interacting or simply in proximity by random chance. We applied this approach to image single-molecule FISH in combination with immunofluorescence (smFISH-IF) and determined whether the association between an mRNA and binding protein(s) within a neuron was significant or accidental. We evaluated several mRNA-binding proteins identified from RNA pulldown assays to determine which of these exhibit bona fide interactions. Surprisingly, many known mRNA-binding proteins did not bind the mRNA in situ, indicating that adventitious interactions are significant using existing technology. This method provides an ability to evaluate two-color registration compatible with the scale of molecular interactions.

    View Publication Page
    11/07/17 | Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane.
    Pak AJ, Grime JM, Sengupta P, Chen AK, Durumeric AE, Srivastava A, Yeager M, Briggs JA, Lippincott-Schwartz J, Voth GA
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Nov 07;114(47):E10056-65. doi: 10.1073/pnas.1706600114

    The packaging and budding of Gag polyprotein and viral RNA is a critical step in the HIV-1 life cycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear. In this work, we investigate the mechanisms that work in concert between the polyproteins, RNA, and membrane to promote immature lattice growth. We develop a coarse-grained (CG) computational model that is derived from subnanometer resolution structural data. Our simulations recapitulate contiguous and hexameric lattice assembly driven only by weak anisotropic attractions at the helical CA-SP1 junction. Importantly, analysis from CG and single-particle tracking photoactivated localization (spt-PALM) trajectories indicates that viral RNA and the membrane are critical constituents that actively promote Gag multimerization through scaffolding, while overexpression of short competitor RNA can suppress assembly. We also find that the CA amino-terminal domain imparts intrinsic curvature to the Gag lattice. As a consequence, immature lattice growth appears to be coupled to the dynamics of spontaneous membrane deformation. Our findings elucidate a simple network of interactions that regulate the early stages of HIV-1 assembly and budding.

    View Publication Page
    08/29/17 | Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells.
    Yang C, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, Lee T
    Development (Cambridge, England). 2017 Aug 29;144(19):3454-64. doi: 10.1242/dev.149500

    The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a "decommissioning" phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the Mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.

    View Publication Page
    04/03/17 | In vivo patch-clamp recording in awake head-fixed rodents.
    Lee D, Lee AK
    Cold Spring Harbor Protocols. 2017 Apr 03;2017(4):pdb.prot095802. doi: 10.1101/pdb.prot095802

    Whole-cell recording has been used to measure and manipulate a neuron's spiking and subthreshold membrane potential, allowing assessment of the cell's inputs and outputs as well as its intrinsic membrane properties. This technique has also been combined with pharmacology and optogenetics as well as morphological reconstruction to address critical questions concerning neuronal integration, plasticity, and connectivity. This protocol describes a technique for obtaining whole-cell recordings in awake head-fixed animals, allowing such questions to be investigated within the context of an intact network and natural behavioral states. First, animals are habituated to sit quietly with their heads fixed in place. Then, a whole-cell recording is obtained using an efficient, blind patching protocol. We have successfully applied this technique to rats and mice.

    View Publication Page