Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

175 Janelia Publications

Showing 21-30 of 175 results
Your Criteria:
    05/18/23 | Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription.
    Dos Santos Á, Rollins DE, Hari-Gupta Y, McArthur H, Du M, Ru SY, Pidlisna K, Stranger A, Lorgat F, Lambert D, Brown I, Howland K, Aaron J, Wang L, Ellis PJ, Chew T, Martin-Fernandez M, Pyne AL, Toseland CP
    Nature Communications. 2023 May 18;14(1):2855. doi: 10.1038/s41467-023-38572-9

    NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.

    View Publication Page
    02/06/23 | Behavioral state-dependent modulation of insulin-producing cells in Drosophila.
    Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM
    Current Biology. 2023 Feb 06;33(3):449. doi: 10.1016/j.cub.2022.12.005

    Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.

    View Publication Page
    06/01/23 | BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets.
    Manubens-Gil L, Zhou Z, Chen H, Ramanathan A, Liu X, Liu Y, Bria A, Gillette T, Ruan Z, Yang J, Radojević M, Zhao T, Cheng L, Qu L, Liu S, Bouchard KE, Gu L, Cai W, Ji S, Roysam B, Wang C, Yu H, Sironi A, Iascone DM, Zhou J, Bas E, Conde-Sousa E, Aguiar P, Li X, Li Y, Nanda S, Wang Y, Muresan L, Fua P, Ye B, He H, Staiger JF, Peter M, Cox DN, Simonneau M, Oberlaender M, Jefferis G, Ito K, Gonzalez-Bellido P, Kim J, Rubel E, Cline HT, Zeng H, Nern A, Chiang A, Yao J, Roskams J, Livesey R, Stevens J, Liu T, Dang C, Guo Y, Zhong N, Tourassi G, Hill S, Hawrylycz M, Koch C, Meijering E, Ascoli GA, Peng H
    Nature Methods. 2023 Jun 01;20(6):. doi: 10.1038/s41592-023-01848-5

    BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.

    View Publication Page
    08/04/23 | Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg.
    Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu T, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WA, Li H, Mhatre N, Tuthill JC
    Neuron. 2023 Aug 04:. doi: 10.1016/j.neuron.2023.07.009

    Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.

    View Publication Page
    08/23/23 | Brain wiring determinants uncovered by integrating connectomes and transcriptomes.
    Yoo J, Dombrovski M, Mirshahidi P, Nern A, LoCascio SA, Zipursky SL, Kurmangaliyev YZ
    Current Biology. 2023 Aug 23;33(18):3998-3998. doi: 10.1016/j.cub.2023.08.020

    Advances in brain connectomics have demonstrated the extraordinary complexity of neural circuits. Developing neurons encounter the axons and dendrites of many different neuron types and form synapses with only a subset of them. During circuit assembly, neurons express cell-type-specific repertoires comprising many cell adhesion molecules (CAMs) that can mediate interactions between developing neurites. Many CAM families have been shown to contribute to brain wiring in different ways. It has been challenging, however, to identify receptor-ligand pairs directly matching neurons with their synaptic targets. Here, we integrated the synapse-level connectome of the neural circuit with the developmental expression patterns and binding specificities of CAMs on pre- and postsynaptic neurons in the Drosophila visual system. To overcome the complexity of neural circuits, we focus on pairs of genetically related neurons that make differential wiring choices. In the motion detection circuit, closely related subtypes of T4/T5 neurons choose between alternative synaptic targets in adjacent layers of neuropil. This choice correlates with the matching expression in synaptic partners of different receptor-ligand pairs of the Beat and Side families of CAMs. Genetic analysis demonstrated that presynaptic Side-II and postsynaptic Beat-VI restrict synaptic partners to the same layer. Removal of this receptor-ligand pair disrupts layers and leads to inappropriate targeting of presynaptic sites and postsynaptic dendrites. We propose that different Side/Beat receptor-ligand pairs collaborate with other recognition molecules to determine wiring specificities in the fly brain. Combining transcriptomes, connectomes, and protein interactome maps allow unbiased identification of determinants of brain wiring.

    View Publication Page
    03/02/23 | Brain-wide neural activity underlying memory-guided movement
    Susu Chen , Yi Liu , Ziyue Wang , Jennifer Colonell , Liu D. Liu , Han Hou , Nai-Wen Tien , Tim Wang , Timothy Harris , Shaul Druckmann , Nuo Li , Karel Svoboda
    bioRxiv. 2023 Mar 02:. doi: 10.1101/2023.03.01.530520

    Behavior requires neural activity across the brain, but most experiments probe neurons in a single area at a time. Here we used multiple Neuropixels probes to record neural activity simultaneously in brain-wide circuits, in mice performing a memory-guided directional licking task. We targeted brain areas that form multi-regional loops with anterior lateral motor cortex (ALM), a key circuit node mediating the behavior. Neurons encoding sensory stimuli, choice, and actions were distributed across the brain. However, in addition to ALM, coding of choice was concentrated in subcortical areas receiving input from ALM, in an ALM-dependent manner. Choice signals were first detected in ALM and the midbrain, followed by the thalamus, and other brain areas. At the time of movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.

    View Publication Page
    06/07/23 | Cell type-specific contributions to a persistent aggressive internal state in female Drosophila
    Hui Chiu , Alice A. Robie , Kristin M. Branson , Tanvi Vippa , Samantha Epstein , Gerald M. Rubin , David J. Anderson , Catherine E. Schretter
    bioRxiv. 2023 Jun 07:. doi: 10.1101/2023.06.07.543722

    Persistent internal states are important for maintaining survival-promoting behaviors, such as aggression. In female Drosophila melanogaster, we have previously shown that individually activating either aIPg or pC1d cell types can induce aggression. Here we investigate further the individual roles of these cholinergic, sexually dimorphic cell types, and the reciprocal connections between them, in generating a persistent aggressive internal state. We find that a brief 30-second optogenetic stimulation of aIPg neurons was sufficient to promote an aggressive internal state lasting at least 10 minutes, whereas similar stimulation of pC1d neurons did not. While we previously showed that stimulation of pC1e alone does not evoke aggression, persistent behavior could be promoted through simultaneous stimulation of pC1d and pC1e, suggesting an unexpected synergy of these cell types in establishing a persistent aggressive state. Neither aIPg nor pC1d show persistent neuronal activity themselves, implying that the persistent internal state is maintained by other mechanisms. Moreover, inactivation of pC1d did not significantly reduce aIPg-evoked persistent aggression arguing that the aggressive state did not depend on pC1d-aIPg recurrent connectivity. Our results suggest the need for alternative models to explain persistent female aggression.

    View Publication Page
    08/14/23 | Cell-type-specific plasticity shapes neocortical dynamics for motor learning
    Shouvik Majumder , Koichi Hirokawa , Zidan Yang , Ronald Paletzki , Charles R. Gerfen , Lorenzo Fontolan , Sandro Romani , Anant Jain , Ryohei Yasuda , Hidehiko K. Inagaki
    bioRxiv. 2023 Aug 14:. doi: 10.1101/2023.08.09.552699

    Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.

    View Publication Page
    03/31/23 | Characterization, Comparison, and Optimization of Lattice Light Sheets
    Gaoxiang Liu , Xiongtao Ruan , Daniel E. Milkie , Frederik Görlitz , Matthew Mueller , Wilmene Hercule , Alison Kililea , Eric Betzig , Srigokul Upadhyayula
    Science Advances. 2023 Mar 31:. doi: 10.1126/sciadv.ade6623

    Lattice light sheet microscopy excels at the non-invasive imaging of three-dimensional (3D) dynamic processes at high spatiotemporal resolution within cells and developing embryos. Recently, several papers have called into question the performance of lattice light sheets relative to the Gaussian sheets most common in light sheet microscopy. Here we undertake a comprehensive theoretical and experimental analysis of various forms of light sheet microscopy which both demonstrates and explains why lattice light sheets provide significant improvements in resolution and photobleaching reduction. The analysis provides a procedure to select the correct light sheet for a desired experiment and specifies the processing that maximizes the use of all fluorescence generated within the light sheet excitation envelope for optimal resolution while minimizing image artifacts and photodamage. Development of a new type of “harmonic balanced” lattice light sheet is shown to improve performance at all spatial frequencies within its 3D resolution limits and maintains this performance over lengthened propagation distances allowing for expanded fields of view.

    View Publication Page
    10/16/23 | Ciliary localization of a light-activated neuronal GPCR shapes behavior.
    Winans AM, Friedmann D, Stanley C, Xiao T, Liu T, Chang CJ, Isacoff EY
    Proceedings of the National Academy of Sciences of the USA. 2023 Oct 16;120(43):e2311131120. doi: 10.1073/pnas.2311131120

    Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a G-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also G-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.

    View Publication Page