Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    03/15/23 | Fast and sensitive GCaMP calcium indicators for imaging neural populations.
    Zhang Y, Rozsa M, Liang Y, Bushey D, Wei Z, Zheng J, Reep D, Broussard GJ, Tsang A, Tsegaye G, Narayan S, Obara CJ, Lim J, Patel R, Zhang R, Ahrens MB, Turner GC, Wang SS, Korff WL, Schreiter ER, Svoboda K, Hasseman JP, Kolb I, Looger LL
    Nature. 2023 Mar 15:. doi: 10.1038/s41586-023-05828-9

    Calcium imaging with protein-based indicators is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.

    View Publication Page
    06/01/23 | Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission.
    Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, GENIE Project Team , Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K
    Nature Methods. 2023 Jun 01;20(6):. doi: 10.1038/s41592-023-01863-6

    The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.

    View Publication Page
    05/17/23 | Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator
    Abdelfattah AS, Zheng J, Singh A, Huang Y, Reep D, Tsegaye G, Tsang A, Arthur BJ, Rehorova M, Olson CV, Shuai Y, Zhang L, Fu T, Milkie DE, Moya MV, Weber TD, Lemire AL, Baker CA, Falco N, Zheng Q, Grimm JB, Yip MC, Walpita D, Chase M, Campagnola L, Murphy GJ, Wong AM, Forest CR, Mertz J, Economo MN, Turner GC, Koyama M, Lin B, Betzig E, Novak O, Lavis LD, Svoboda K, Korff W, Chen T, Schreiter ER, Hasseman JP, Kolb I
    Neuron. 2023 May 17;111(10):1547-1563. doi: 10.1016/j.neuron.2023.03.009

    The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.

    View Publication Page