Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

general_search_page-panel_pane_1 | views_panes

177 Janelia Publications

Showing 61-70 of 177 results
Your Criteria:
    08/03/20 | Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures.
    Tesileanu T, Conte MM, Briguglio JJ, Hermundstad AM, Victor JD, Balasubramanian V
    eLife. 2020 Aug 3;9:. doi: 10.7554/eLife.54347

    Previously, in (Hermundstad et al., 2014), we showed that when sampling is limiting, the efficient coding principle leads to a 'variance is salience' hypothesis, and that this hypothesis accounts for visual sensitivity to binary image statistics. Here, using extensive new psychophysical data and image analysis, we show that this hypothesis accounts for visual sensitivity to a large set of grayscale image statistics at a striking level of detail, and also identify the limits of the prediction. We define a 66-dimensional space of local grayscale light-intensity correlations, and measure the relevance of each direction to natural scenes. The 'variance is salience' hypothesis predicts that two-point correlations are most salient, and predicts their relative salience. We tested these predictions in a texture-segregation task using un-natural, synthetic textures. As predicted, correlations beyond second order are not salient, and predicted thresholds for over 300 second-order correlations match psychophysical thresholds closely (median fractional error < 0:13).

    View Publication Page
    06/23/20 | Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na+ channels in nanodisc
    Gao S, Valinsky WC, On NC, Houlihan PR, Qu Q, Liu L, Pan X, Clapham DE, Yan N
    Proceedings of the National Academy of Sciences of the U.S.A.. 2020 Jun 23;117(25):14187-93. doi: 10.1073/pnas.1922903117

    NaChBac, the first bacterial voltage-gated Na+ (Nav) channel to be characterized, has been the prokaryotic prototype for studying the structure–function relationship of Nav channels. Discovered nearly two decades ago, the structure of NaChBac has not been determined. Here we present the single particle electron cryomicroscopy (cryo-EM) analysis of NaChBac in both detergent micelles and nanodiscs. Under both conditions, the conformation of NaChBac is nearly identical to that of the potentially inactivated NavAb. Determining the structure of NaChBac in nanodiscs enabled us to examine gating modifier toxins (GMTs) of Nav channels in lipid bilayers. To study GMTs in mammalian Nav channels, we generated a chimera in which the extracellular fragment of the S3 and S4 segments in the second voltage-sensing domain from Nav1.7 replaced the corresponding sequence in NaChBac. Cryo-EM structures of the nanodisc-embedded chimera alone and in complex with HuwenToxin IV (HWTX-IV) were determined to 3.5 and 3.2 Å resolutions, respectively. Compared to the structure of HWTX-IV–bound human Nav1.7, which was obtained at an overall resolution of 3.2 Å, the local resolution of the toxin has been improved from ∼6 to ∼4 Å. This resolution enabled visualization of toxin docking. NaChBac can thus serve as a convenient surrogate for structural studies of the interactions between GMTs and Nav channels in a membrane environment.

    View Publication Page
    05/28/20 | Enhanced Golic+: Highly effective CRISPR gene targeting and transgene HACKing in .
    Chen H, Yao X, Ren Q, Chang C, Liu L, Miyares RL, Lee T
    Development. 2020 May 28:. doi: 10.1242/dev.181974

    Gene targeting is an incredibly valuable technique. Sometimes however, it can also be extremely challenging for various intrinsic reasons (e.g. low target accessibility or nature/extent of gene modification). To bypass these barriers, we designed a transgene-based system in Drosophila that increases the number of independent gene targeting events while at the same time enriching for correctly targeted progeny. Unfortunately, with particularly challenging gene targeting experiments, our original design yielded numerous false positives. Here we deliver a much-improved technique named Enhanced Golic+ (E-Golic+). E-Golic+ incorporates genetic modifications to tighten lethality-based selection while simultaneously boosting efficiency. With E-Golic+, we easily achieve previously unattainable gene targeting. Additionally, we built an E-Golic+ based, high-efficiency genetic pipeline for transgene swapping. We demonstrate its utility by transforming GAL4 enhancer-trap lines into tissue-specific Cas9-expressing lines. Given the superior efficiency, specificity and scalability, E-Golic+ promises to expedite development of additional sophisticated genetic/genomic tools in .

    View Publication Page
    03/31/20 | ER membranes exhibit phase behavior at sites of organelle contact.
    King C, Sengupta P, Seo AY, Lippincott-Schwartz J
    Proceedings of the National Academy of Sciences of the United States of America. 2020 March 31;117(13):7225-7235. doi: 10.1073/pnas.1910854117

    The endoplasmic reticulum (ER) is the site of synthesis of secretory and membrane proteins and contacts every organelle of the cell, exchanging lipids and metabolites in a highly regulated manner. How the ER spatially segregates its numerous and diverse functions, including positioning nanoscopic contact sites with other organelles, is unclear. We demonstrate that hypotonic swelling of cells converts the ER and other membrane-bound organelles into micrometer-scale large intracellular vesicles (LICVs) that retain luminal protein content and maintain contact sites with each other through localized organelle tethers. Upon cooling, ER-derived LICVs phase-partition into microscopic domains having different lipid-ordering characteristics, which is reversible upon warming. Ordered ER lipid domains mark contact sites with ER and mitochondria, lipid droplets, endosomes, or plasma membrane, whereas disordered ER lipid domains mark contact sites with lysosomes or peroxisomes. Tethering proteins concentrate at ER–organelle contact sites, allowing time-dependent behavior of lipids and proteins to be studied at these sites. These findings demonstrate that LICVs provide a useful model system for studying the phase behavior and interactive properties of organelles in intact cells.

    View Publication Page
    09/15/20 | Erasable labeling of neuronal activity using a reversible calcium marker.
    Sha F, Abdelfattah AS, Patel R, Schreiter ER
    eLife. 2020 Sep 15;9:. doi: 10.7554/eLife.57249

    Understanding how the brain encodes and processes information requires the recording of neural activity that underlies different behaviors. Recent efforts in fluorescent protein engineering have succeeded in developing powerful tools for visualizing neural activity, in general by coupling neural activity to different properties of a fluorescent protein scaffold. Here, we take advantage of a previously unexploited class of reversibly switchable fluorescent proteins to engineer a new type of calcium sensor. We introduce rsCaMPARI, a genetically encoded calcium marker engineered from a reversibly switchable fluorescent protein that enables spatiotemporally precise marking, erasing, and remarking of active neuron populations under brief, user-defined time windows of light exposure. rsCaMPARI photoswitching kinetics are modulated by calcium concentration when illuminating with blue light, and the fluorescence can be reset with violet light. We demonstrate the utility of rsCaMPARI for marking and remarking active neuron populations in freely swimming zebrafish.

    View Publication Page
    05/01/20 | Estimating the power of sequence covariation for detecting conserved RNA structure.
    Rivas E, Clements J, Eddy SR, Ponty Y
    Bioinformatics. 2020 May 01;36(10):3072-76. doi: 10.1093/bioinformatics/btaa080

    Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long noncoding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures.

    View Publication Page
    Sternson Lab
    09/17/20 | Exploring internal state-coding across the rodent brain.
    Sternson SM
    Current Opinion in Neurobiology. 2020 Sep 17;65:20-26. doi: 10.1016/j.conb.2020.08.009

    The influence of peripheral physiology on goal-directed behavior involves specialized interoceptive sensory neurons that signal internal state to the brain. Here, we review recent progress to examine the impact of these specialized cell types on neurons and circuits throughout the central nervous system. These new approaches are important for understanding how the needs of the body interact and guide goal-directed behaviors.

    View Publication Page
    09/01/20 | Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala.
    O'Leary TP, Sullivan KE, Wang L, Clements J, Lemire AL, Cembrowski MS
    eLife. 2020 Sep 01;9:. doi: 10.7554/eLife.59003

    The basolateral amygdala complex (BLA), extensively connected with both local amygdalar nuclei as well as long-range circuits, is involved in a diverse array of functional roles. Understanding the mechanisms of such functional diversity will be greatly informed by understanding the cell-type-specific landscape of the BLA. Here, beginning with single-cell RNA sequencing, we identified both discrete and graded continuous gene-expression differences within the mouse BLA. Via in situ hybridization, we next mapped this discrete transcriptomic heterogeneity onto a sharp spatial border between the basal and lateral amygdala nuclei, and identified continuous spatial gene-expression gradients within each of these regions. These discrete and continuous spatial transformations of transcriptomic cell-type identity were recapitulated by local morphology as well as long-range connectivity. Thus, BLA excitatory neurons are a highly heterogenous collection of neurons that spatially covary in molecular, cellular, and circuit properties. This heterogeneity likely drives pronounced spatial variation in BLA computation and function.

    View Publication Page
    Looger Lab
    11/15/20 | Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures
    Yoshiteru Shimoda , Vincent Magloire , Jonathan S Marvin , Marco Leite , Loren L Looger , Dimitri M Kullmann
    bioRxiv. 2020 Nov 15:. doi: 10.1101/2020.11.13.381707

    Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. Here we use fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes are accompanied by brief glutamate transients which are maximal at the initiation site and rapidly propagate centrifugally. GABA transients last longer than glutamate transients and are maximal ~1.5 mm from the focus where they propagate centripetally. At the transition to seizures, GABA transients are attenuated, whilst glutamate transients increase in spatial extent. The data imply that an annulus of feed-forward GABA release intermittently collapses, allowing seizures to escape from local inhibitory restraint.

    View Publication Page
    06/04/20 | First occurrence of the pest Drosophila suzukii (Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian Ocean)
    Hassani I, Behrman E, Prigent S, Gidaszewski N, Ravaomanarivo LR, Suwalski A, Debat V, David J, Yassin A
    African Entomology. 2020 Jun 04;28(1):78. doi: 10.4001/003.028.0078

    Drosophila suzukii (Matsumura, 1931) is an Asian pest of grapes and other soft fruits that has invaded North America and Europe during the last decade. Here we report its recent occurrence on two islands of the Comoros archipelago in the Mozambique Channel, namely Mayotte and Ngazidja (Grande Comore), in April 2017 and November 2018, respectively. We also document its absence from other African islands in the Mozambique Channel and the Western Indian Ocean including Mayotte until 2013. Drosophila ashburneriTsacas, 1984 is the only member of the suzukii species subgroup known from the Comoros, but it is morphologically distinct and likely distantly related to DsuzukiiDrosophila suzukii has likely been recently introduced to the Comoros archipelago, perhaps from La Réunion island where it first appeared in November 2013. On all of these tropical islands, Dsuzukii was found in high-altitude habitats in agreement with its adaptation to cold environments. These results suggest the high susceptibility of highlands in eastern and southern Africa to be infested by this pest in the near future.

    View Publication Page