Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

17 Janelia Publications

Showing 11-17 of 17 results
Your Criteria:
    08/19/22 | Flexible control of behavioral variability mediated by an internal representation of head direction
    Chuntao Dan , Brad K. Hulse , Vivek Jayaraman , Ann M. Hermundstad
    bioRxiv. 2022 Aug 19:. doi: 10.1101/2021.08.18.456004

    Internal representations are thought to support the generation of flexible, long-timescale behavioral patterns in both animals and artificial agents. Here, we present a novel conceptual framework for how Drosophila use their internal representation of head direction to maintain preferred headings in their surroundings, and how they learn to modify these preferences in the presence of selective thermal reinforcement. To develop the framework, we analyzed flies’ behavior in a classical operant visual learning paradigm and found that they use stochastically generated fixations and directed turns to express their heading preferences. Symmetries in the visual scene used in the paradigm allowed us to expose how flies’ probabilistic behavior in this setting is tethered to their head direction representation. We describe how flies’ ability to quickly adapt their behavior to the rules of their environment may rest on a behavioral policy whose parameters are flexible but whose form is genetically encoded in the structure of their circuits. Many of the mechanisms we outline may also be relevant for rapidly adaptive behavior driven by internal representations in other animals, including mammals.

    View Publication Page
    11/20/19 | Generation of stable heading representations in diverse visual scenes.
    Kim SS, Hermundstad AM, Romani S, Abbott LF, Jayaraman V
    Nature. 2019 Nov 20;576(7785):126-31. doi: 10.1038/s41586-019-1767-1

    Many animals rely on an internal heading representation when navigating in varied environments. How this representation is linked to the sensory cues that define different surroundings is unclear. In the fly brain, heading is represented by 'compass' neurons that innervate a ring-shaped structure known as the ellipsoid body. Each compass neuron receives inputs from 'ring' neurons that are selective for particular visual features; this combination provides an ideal substrate for the extraction of directional information from a visual scene. Here we combine two-photon calcium imaging and optogenetics in tethered flying flies with circuit modelling, and show how the correlated activity of compass and visual neurons drives plasticity, which flexibly transforms two-dimensional visual cues into a stable heading representation. We also describe how this plasticity enables the fly to convert a partial heading representation, established from orienting within part of a novel setting, into a complete heading representation. Our results provide mechanistic insight into the memory-related computations that are essential for flexible navigation in varied surroundings.

    View Publication Page
    Hermundstad LabSternson Lab
    09/17/20 | Hindbrain double-negative feedback mediates palatability-guided food and water consumption.
    Gong R, Xu S, Hermundstad A, Yu Y, Sternson SM
    Cell. 2020 Sep 17;182(6):1589-1605. doi: 10.1016/j.cell.2020.07.031

    Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLC neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLC neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLC neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLC neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLC neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.

    View Publication Page
    05/18/22 | Maintaining a stable head direction representation in naturalistic visual environments
    Hannah Haberkern , Shivam S Chitnis , Philip M Hubbard , Tobias Goulet , Ann M Hermundstad , Vivek Jayaraman
    bioRxiv. 2022 May 18:. doi: 10.1101/2022.05.17.492284

    Many animals rely on a representation of head direction for flexible, goal-directed navigation. In insects, a compass-like head direction representation is maintained in a conserved brain region called the central complex. This head direction representation is updated by self-motion information and by tethering to sensory cues in the surroundings through a plasticity mechanism. However, under natural settings, some of these sensory cues may temporarily disappear—for example, when clouds hide the sun—and prominent landmarks at different distances from the insect may move across the animal's field of view during translation, creating potential conflicts for a neural compass. We used two-photon calcium imaging in head-fixed Drosophila behaving in virtual reality to monitor the fly's compass during navigation in immersive naturalistic environments with approachable local landmarks. We found that the fly's compass remains stable even in these settings by tethering to available global cues, likely preserving the animal's ability to perform compass-driven behaviors such as maintaining a constant heading.

    View Publication Page
    06/12/17 | Neural signatures of dynamic stimulus selection in Drosophila.
    Sun Y, Nern A, Franconville R, Dana H, Schreiter ER, Looger LL, Svoboda K, Kim DS, Hermundstad AM, Jayaraman V
    Nature Neuroscience. 2017 Jun 12;20(8):1104-13. doi: 10.1038/nn.4581

    Many animals orient using visual cues, but how a single cue is selected from among many is poorly understood. Here we show that Drosophila ring neurons—central brain neurons implicated in navigation—display visual stimulus selection. Using in vivo two-color two-photon imaging with genetically encoded calcium indicators, we demonstrate that individual ring neurons inherit simple-cell-like receptive fields from their upstream partners. Stimuli in the contralateral visual field suppressed responses to ipsilateral stimuli in both populations. Suppression strength depended on when and where the contralateral stimulus was presented, an effect stronger in ring neurons than in their upstream inputs. This history-dependent effect on the temporal structure of visual responses, which was well modeled by a simple biphasic filter, may determine how visual references are selected for the fly's internal compass. Our approach highlights how two-color calcium imaging can help identify and localize the origins of sensory transformations across synaptically connected neural populations.

    View Publication Page
    05/24/22 | Perceptual decisions exhibit hallmarks of dynamic Bayesian inference
    Julie A. Charlton , Wiktor F. Młynarski , Yoon H. Bai , Ann M. Hermundstad , Robbe L. T. Goris
    bioRxiv. 2022 May 24:. doi: 10.1101/2022.05.23.493109

    To interpret the sensory environment, the brain combines ambiguous sensory measurements with context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages the statistical structure of the task to maximize decision accuracy and show that its decisions are biased by task context. The magnitude of this decision bias is not a fixed property of the sensory measurement but depends on the observer's belief about the current context. The model therefore predicts that decision bias will grow with the reliability of the context cue, the stability of the environment, and with the number of trials since the last context switch. Analysis of human choice data validates all three predictions, providing evidence that the brain continuously updates probabilistic representations of the environment to best interpret an uncertain, ever-changing world.

    View Publication Page
    08/11/21 | Structured patterns of activity in pulse-coupled oscillator networks with varied connectivity.
    Kadhim KL, Hermundstad AM, Brown KS
    PLoS One. 2021 Aug 11;16(8):e0256034. doi: 10.1371/journal.pone.0256034

    Identifying coordinated activity within complex systems is essential to linking their structure and function. We study collective activity in networks of pulse-coupled oscillators that have variable network connectivity and integrate-and-fire dynamics. Starting from random initial conditions, we see the emergence of three broad classes of behaviors that differ in their collective spiking statistics. In the first class ("temporally-irregular"), all nodes have variable inter-spike intervals, and the resulting firing patterns are irregular. In the second ("temporally-regular"), the network generates a coherent, repeating pattern of activity in which all nodes fire with the same constant inter-spike interval. In the third ("chimeric"), subgroups of coherently-firing nodes coexist with temporally-irregular nodes. Chimera states have previously been observed in networks of oscillators; here, we find that the notions of temporally-regular and chimeric states encompass a much richer set of dynamical patterns than has yet been described. We also find that degree heterogeneity and connection density have a strong effect on the resulting state: in binomial random networks, high degree variance and intermediate connection density tend to produce temporally-irregular dynamics, while low degree variance and high connection density tend to produce temporally-regular dynamics. Chimera states arise with more frequency in networks with intermediate degree variance and either high or low connection densities. Finally, we demonstrate that a normalized compression distance, computed via the Lempel-Ziv complexity of nodal spike trains, can be used to distinguish these three classes of behavior even when the phase relationship between nodes is arbitrary.

    View Publication Page