Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2 Janelia Publications

Showing 1-2 of 2 results
Your Criteria:
    Cui Lab
    03/09/15 | In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique.
    Kong L, Cui M
    Optics Express. 2015 Mar 9;23(5):6145-50. doi: 10.1364/OE.23.006145

    For in vivo deep tissue imaging, high order wavefront measurement and correction is needed for handling the severe wavefront distortion. Towards such a goal, we have developed the iterative multi-photon adaptive compensation technique (IMPACT). In this work, we explore using IMPACT to perform calcium imaging of neocortex through the intact skull of adult mice, and to image through the highly scattering white matter on the hippocampus surface.

    View Publication Page
    Cui Lab
    03/23/15 | Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy.
    Wu T, Cui M
    Optics Express. 2015 Mar 23;23(6):7463-70. doi: 10.1364/OE.23.007463

    Wavefront distortion fundamentally limits the achievable imaging depth and quality in thick tissue. Wavefront correction can help restore the diffraction limited focus albeit with a small field of view (FOV), which limits its imaging applications. In this work, we numerically investigate whether the multi-conjugate configuration, originally developed for astronomical adaptive optics, may increase the correction FOV in random turbid media. The results show that the multi-conjugate configuration can significantly improve the correction area compared to the widely adopted pupil plane correction. Even in the simple case of single-conjugation, it still outperforms the pupil plane correction. This study provides a guideline for designing the optimal wavefront correction system in deep tissue imaging.

    View Publication Page