Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

17 Janelia Publications

Showing 11-17 of 17 results
Your Criteria:
    08/13/15 | Lighting up genes in single cells at scale.
    Liu Z
    Cell. 2015 Aug 13;162(4):705-7. doi: 10.1016/j.cell.2015.07.052
    Svoboda Lab
    08/06/15 | Low-noise encoding of active touch by layer 4 in the somatosensory cortex.
    Andrew Hires S, Gutnisky DA, Yu J, O'Connor DH, Svoboda K
    eLife. 2015 Aug 6;4:. doi: 10.7554/eLife.06619

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.

    View Publication Page
    08/19/15 | Novel behavioral paradigm reveals lower temporal limits on mouse olfactory decisions.
    Resulaj A, Rinberg D
    The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 2015 Aug 19;35(33):11667-73. doi: 10.1523/JNEUROSCI.4693-14.2015

    UNLABELLED: Temporal limits on perceptual decisions set strict boundaries on the possible underlying neural computations. How odor information is encoded in the olfactory system is still poorly understood. Here, we sought to define the limit on the speed of olfactory processing. To achieve this, we trained mice to discriminate different odor concentrations in a novel behavioral setup with precise odor delivery synchronized to the sniffing cycle. Mice reported their choice by moving a horizontal treadmill with their front limbs. We found that mice reported discriminations of 75% accuracy in 70-90 ms after odor inhalation. For a low concentration and nontrigeminal odorant, this time was 90-140 ms, showing that mice process odor information rapidly even in the absence of trigeminal stimulation. These response times establish, after accounting for odor transduction and motor delays, that olfactory processing can take tens of milliseconds. This study puts a strong limit on the underlying neural computations and suggests that the action potentials forming the neural basis for these decisions are fired in a few tens of milliseconds.

    SIGNIFICANCE STATEMENT: Understanding how sensory information is processed requires different approaches that span multiple levels of investigation from genes to neurons to behavior. Limits on behavioral performance constrain the possible neural mechanisms responsible for specific computations. Using a novel behavioral paradigm, we established that mice can make decisions about odor intensity surprisingly fast. After accounting for sensory and motor delays, the limit on some olfactory neural computations can be as low as a few tens of milliseconds, which suggests that only the first action potentials across a population of neurons contribute to these computations.

    View Publication Page
    Sternson Lab
    08/26/15 | Optogenetics: 10 years after ChR2 in neurons-views from the community.
    Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A, Buzsáki G, Cardin JA, Costa RM, Dan Y, Goda Y, Graybiel AM, Häusser M, Hegemann P, Huguenard JR, Insel TR, Janak PH, Johnston D, Josselyn SA, Koch C, Kreitzer AC, Lüscher C, Malenka RC, Miesenböck G, Nagel G, Roska B, Schnitzer MJ, Shenoy KV, Soltesz I, Sternson SM, Tsien RW, Tsien RY, Turrigiano GG, Tye KM, Wilson RI
    Nature Neuroscience. 2015 Aug 26;18(9):1202-12. doi: 10.1038/nn.4106
    Singer Lab
    08/01/15 | Single-molecule insights into mRNA dynamics in neurons.
    Buxbaum AR, Yoon YJ, Singer RH, Park HY
    Trends in Cell Biology. 2015 Aug;25(8):468-75. doi: 10.1016/j.tcb.2015.05.005

    Targeting of mRNAs to neuronal dendrites and axons plays an integral role in intracellular signaling, development, and synaptic plasticity. Single-molecule imaging of mRNAs in neurons and brain tissue has led to enhanced understanding of mRNA dynamics. Here we discuss aspects of mRNA regulation as revealed by single-molecule detection, which has led to quantitative analyses of mRNA diversity, localization, transport, and translation. These exciting new discoveries propel our understanding of the life of an mRNA in a neuron and how its activity is regulated at the single-molecule level.

    View Publication Page
    08/28/15 | The transgenic RNAi project at Harvard Medical School: resources and validation.
    Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim H, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu L, Jiang X, Huan-Huan Q, Xia W, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni J, Perrimon N
    Genetics. 2015 Aug 28;201(3):843-52. doi: 10.1534/genetics.115.180208

    To facilitate large scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently comprised of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated web site, the RNAi Stock Validation and Phenotypes Project (RSVP; www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (USA), National Institute of Genetics (Japan), and TsingHua Fly Center (China).

    View Publication Page
    08/11/15 | Whole-central nervous system functional imaging in larval Drosophila.
    Lemon WC, Pulver SR, Höckendorf B, McDole K, Branson KM, Freeman J, Keller PJ
    Nature Communications. 2015 Aug 11;6:7924. doi: 10.1038/ncomms8924

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

    View Publication Page