Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

190 Janelia Publications

Showing 71-80 of 190 results
Your Criteria:
    01/01/14 | Generating mosaics for lineage analysis in flies.
    Lee T
    Wiley Interdisciplinary Reviews - Developmental Biology. 2014 Jan;3(1):69-81. doi: 10.1002/wdev.122

    By generating and studying mosaic organisms, we are learning how intricate tissues form as cells proliferate and diversify through organism development. FLP/FRT-mediated site-specific mitotic recombination permits the generation of mosaic flies with efficiency and control. With heat-inducible or tissue-specific FLP transgenes at our disposal, we can engineer mosaics carrying clones of homozygous cells that come from specific pools of heterozygous precursors. This permits detailed cell lineage analysis followed by mosaic analysis of gene functions in the underlying developmental processes. Expression of transgenes (e.g., reporters) only in the homozygous cells enables mosaic analysis in the complex nervous system. Tracing neuronal lineages by using mosaics revolutionized mechanistic studies of neuronal diversification and differentiation, exemplifying the power of genetic mosaics in developmental biology. WIREs Dev Biol 2014, 3:69–81. doi: 10.1002/wdev.122

    View Publication Page
    Baker Lab
    01/16/14 | Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila.
    Pan Y, Baker BS
    Cell. 2014 Jan 16;156(1-2):236-48. doi: 10.1016/j.cell.2013.11.041

    Wild-type D. melanogaster males innately possess the ability to perform a multistep courtship ritual to conspecific females. The potential for this behavior is specified by the male-specific products of the fruitless (fru(M)) gene; males without fru(M) do not court females when held in isolation. We show that such fru(M) null males acquire the potential for courtship when grouped with other flies; they apparently learn to court flies with which they were grouped, irrespective of sex or species and retain this behavior for at least a week. The male-specific product of the doublesex gene (dsx(M)) is necessary and sufficient for the acquisition of the potential for such experience-dependent courtship. These results reveal a process that builds, via dsx(M) and social experience, the potential for a more flexible sexual behavior, which could be evolutionarily conserved as dsx-related genes that function in sexual development are found throughout the animal kingdom.

    View Publication Page
    04/25/14 | Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis.
    International Glossina Genome Initiative
    Science. 2014 Apr 25;344(6182):380-6. doi: 10.1126/science.1249656

    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.

    View Publication Page
    04/01/14 | Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of nitric oxide synthase and Fd59a/Fox-D.
    Lacin H, Rusch J, Yeh RT, Fujioka M, Wilson BA, Zhu Y, Robie AA, Mistry H, Wang T, Jaynes JB, Skeath JB
    Developmental Biology. 2014 Apr 1;388:117-33. doi: 10.1016/j.ydbio.2014.01.029

    Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9(+) neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9(+) neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors. Through the parallel use of micro-array gene expression profiling and the Dam-ID method, we searched for Hb9-regulated genes, uncovering transcription factors as the most over-represented class of genes regulated by Hb9 (and Nkx6) in the CNS. By a nearly ten-to-one ratio, Hb9 represses rather than activates transcription factors, highlighting transcriptional repression of other transcription factors as a core mechanism by which Hb9 governs neuronal determination. From the small set of genes activated by Hb9, we characterized the expression and function of two - fd59a/foxd, which encodes a transcription factor, and Nitric oxide synthase. Under standard lab conditions, both genes are dispensable for Drosophila development, but Nos appears to inhibit hyper-active behavior and fd59a appears to act in octopaminergic neurons to control egg-laying behavior. Together our data clarify the mechanisms through which Hb9 governs neuronal specification and differentiation and provide an initial characterization of the expression and function of Nos and fd59a in the Drosophila CNS.

    View Publication Page
    04/04/14 | Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages
    Nunez-Iglesias J, Kennedy R, Plaza SM, Chakraborty A, William T. Katz
    Frontiers in Neuroinformatics. 2014 Apr 4;8:34. doi: 10.3389/fninf.2014.00034

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them.

    View Publication Page
    Gonen Lab
    10/24/14 | High thermodynamic stability of parametrically designed helical bundles.
    Huang P, Oberdorfer G, Xu C, Pei XY, Nannenga BL, Rogers JM, DiMaio F, Gonen T, Luisi B, Baker D
    Science. 2014 Oct 24;346(6208):481-5. doi: 10.1126/science.1257481

    We describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil-generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated ΔGfold > 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing between the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.

    View Publication Page
    Gonen Lab
    09/01/14 | High-resolution structure determination by continuous-rotation data collection in MicroED.
    Nannenga BL, Shi D, Leslie AG, Gonen T
    Nature Methods. 2014 Sep;11(9):927-30. doi: 10.1038/nmeth.3043

    MicroED uses very small three-dimensional protein crystals and electron diffraction for structure determination. We present an improved data collection protocol for MicroED called 'continuous rotation'. Microcrystals are continuously rotated during data collection, yielding more accurate data. The method enables data processing with the crystallographic software tool MOSFLM, which resulted in improved resolution for the model protein lysozyme. These improvements are paving the way for the broad implementation and application of MicroED in structural biology.

    View Publication Page
    12/03/14 | Identification of loci that cause phenotypic variation in diverse species with the reciprocal hemizygosity test.
    Stern DL
    Trends in Genetics. 2014 Dec;30(12):547-554. doi: 10.1016/j.tig.2014.09.006

    The reciprocal hemizygosity test is a straightforward genetic test that can positively identify genes that have evolved to contribute to a phenotypic difference between strains or between species. The test involves a comparison between hybrids that are genetically identical throughout the genome except at the test locus, which is rendered hemizygous for alternative alleles from the two parental strains. If the two reciprocal hemizygotes display different phenotypes, then the two parental alleles must have evolved. New methods for targeted mutagenesis will allow application of the reciprocal hemizygosity test in many organisms. This review discusses the principles, advantages, and limitations of the test.

    View Publication Page
    09/05/14 | Identifying synapses using deep and wide multiscale recursive networks.
    Huang G, Plaza SM
    arXiv. 2014 Sep 5:arXiv:1409.1789 [cs.CV]

    In this work, we propose a learning framework for identifying synapses using a deep and wide multi-scale recursive (DAWMR) network, previously considered in image segmentation applications. We apply this approach on electron microscopy data from invertebrate fly brain tissue. By learning features directly from the data, we are able to achieve considerable improvements over existing techniques that rely on a small set of hand-designed features. We show that this system can reduce the amount of manual annotation required, in both acquisition of training data as well as verification of inferred detections.

    View Publication Page