Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

28 Janelia Publications

Showing 11-20 of 28 results
Your Criteria:
    09/02/21 | Electrode pooling can boost the yield of extracellular recordings with switchable silicon probes.
    Lee KH, Ni Y, Colonell J, Karsh B, Putzeys J, Pachitariu M, Harris TD, Meister M
    Nature Communications. 2021 Sep 02;12(1):5245. doi: 10.1038/s41467-021-25443-4

    State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.

    View Publication Page
    11/20/23 | Facemap: a framework for modeling neural activity based on orofacial tracking
    Atika Syeda , Lin Zhong , Renee Tung , Will Long , Marius Pachitariu , Carsen Stringer
    Nature Neuroscience. 2023 Nov 20:. doi: 10.1038/s41593-023-01490-6

    Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracking algorithm and a deep neural network encoder for predicting neural activity. We used the Facemap keypoints as input for the deep neural network to predict the activity of ∼50,000 simultaneously-recorded neurons and in visual cortex we doubled the amount of explained variance compared to previous methods. Our keypoint tracking algorithm was more accurate than existing pose estimation tools, while the inference speed was several times faster, making it a powerful tool for closed-loop behavioral experiments. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used Facemap to find that the neuronal activity clusters which were highly driven by behaviors were more spatially spread-out across cortex. We also found that the deep keypoint features inferred by the model had time-asymmetrical state dynamics that were not apparent in the raw keypoint data. In summary, Facemap provides a stepping stone towards understanding the function of the brainwide neural signals and their relation to behavior.

    View Publication Page
    11/08/17 | Fully integrated silicon probes for high-density recording of neural activity.
    Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P, Lopez CM, Mitelut C, Musa S, Okun M, Pachitariu M, Putzeys J, Rich PD, Rossant C, Sun W, Svoboda K, Carandini M, Harris KD, Koch C, O'Keefe J, Harris TD
    Nature. 2017 Nov 08;551(7679):232-236. doi: 10.1038/nature24636

    Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca(2+) imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.

    View Publication Page
    06/26/19 | High-dimensional geometry of population responses in visual cortex.
    Stringer C, Pachitariu M, Steinmetz NA, Carandini M, Harris KD
    Nature. 2019 Jun 26;571(7765):361-65. doi: 10.1038/s41586-019-1346-5

    A neuronal population encodes information most efficiently when its activity is uncorrelated and high-dimensional, and most robustly when its activity is correlated and lower-dimensional. Here, we analyzed the correlation structure of natural image coding, in large visual cortical populations recorded from awake mice. Evoked population activity was high dimensional, with correlations obeying an unexpected power-law: the n-th principal component variance scaled as 1/n. This was not inherited from the 1/f spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that the variance spectrum must decay at least this fast if a population code is smooth, i.e. if small changes in input cannot dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness represents a fundamental constraint governing correlations in neural population codes.

    View Publication Page
    05/13/21 | High-precision coding in visual cortex.
    Stringer C, Michaelos M, Tsyboulski D, Lindo SE, Pachitariu M
    Cell. 2021 May 13;184(10):2767-78. doi: 10.1016/j.cell.2021.03.042

    Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.

    View Publication Page
    Pachitariu LabSternson Lab
    07/01/21 | Hunger or thirst state uncertainty is resolved by outcome evaluation in medial prefrontal cortex to guide decision-making.
    Eiselt A, Chen S, Chen J, Arnold J, Kim T, Pachitariu M, Sternson SM
    Nature Neuroscience. 2021 Jul 01;24(7):907-912. doi: 10.1038/s41593-021-00850-4

    Physiological need states direct decision-making toward re-establishing homeostasis. Using a two-alternative forced choice task for mice that models elements of human decisions, we found that varying hunger and thirst states caused need-inappropriate choices, such as food seeking when thirsty. These results show limits on interoceptive knowledge of hunger and thirst states to guide decision-making. Instead, need states were identified after food and water consumption by outcome evaluation, which depended on the medial prefrontal cortex.

    View Publication Page
    04/16/21 | Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
    Steinmetz NA, Aydın Ç, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD
    Science. 2021 Apr 16;372(6539):. doi: 10.1126/science.abf4588

    Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.

    View Publication Page
    07/28/23 | Rastermap: a discovery method for neural population recordings
    Carsen Stringer , Lin Zhong , Atika Syeda , Fengtong Du , Marius Pachitariu
    bioRxiv. 2023 Jul 28:. doi: 10.1101/2023.07.25.550571

    Neurophysiology has long progressed through exploratory experiments and chance discoveries. Anecdotes abound of researchers setting up experiments while listening to spikes in real time and observing a pattern of consistent firing when certain stimuli or behaviors happened. With the advent of large-scale recordings, such close observation of data has become harder because high-dimensional spaces are impenetrable to our pattern-finding intuitions. To help ourselves find patterns in neural data, our lab has been openly developing a visualization framework known as “Rastermap” over the past five years. Rastermap takes advantage of a new global optimization algorithm for sorting neural responses along a one-dimensional manifold. Displayed as a raster plot, the sorted neurons show a variety of activity patterns, which can be more easily identified and interpreted. We first benchmark Rastermap on realistic simulations with multiplexed cognitive variables. Then we demonstrate it on recordings of tens of thousands of neurons from mouse visual and sensorimotor cortex during spontaneous, stimulus-evoked and task-evoked epochs, as well as on whole-brain zebrafish recordings, widefield calcium imaging data, population recordings from rat hippocampus and artificial neural networks. Finally, we illustrate high-dimensional scenarios where Rastermap and similar algorithms cannot be used effectively.

    View Publication Page
    08/06/18 | Robustness of spike deconvolution for neuronal calcium imaging.
    Pachitariu M, Stringer C, Harris KD
    The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2018 Aug 06;38(37):7976-85. doi: 10.1523/JNEUROSCI.3339-17.2018

    Calcium imaging is a powerful method to record the activity of neural populations in many species, but inferring spike times from calcium signals is a challenging problem. We compared multiple approaches using multiple datasets with ground truth electrophysiology, and found that simple non-negative deconvolution (NND) outperformed all other algorithms on out-of-sample test data. We introduce a novel benchmark applicable to recordings without electrophysiological ground truth, based on the correlation of responses to two stimulus repeats, and used this to show that unconstrained NND also outperformed the other algorithms when run on "zoomed out" datasets of ∼10,000 cell recordings from the visual cortex of mice of either sex. Finally, we show that NND-based methods match the performance of a supervised method based on convolutional neural networks, while avoiding some of the biases of such methods, and at much faster running times. We therefore recommend that spikes be inferred from calcium traces using simple NND, due to its simplicity, efficiency and accuracy.The experimental method that currently allows for recordings of the largest numbers of cells simultaneously is two-photon calcium imaging. However, use of this powerful method requires that neuronal firing times be inferred correctly from the large resulting datasets. Previous studies have claimed that complex supervised learning algorithms outperform simple deconvolution methods at this task. Unfortunately, these studies suffered from several problems and biases. When we repeated the analysis, using the same data and correcting these problems, we found that simpler spike inference methods perform better. Even more importantly, we found that supervised learning methods can introduce artifactual structure into spike trains, that can in turn lead to erroneous scientific conclusions. Of the algorithms we evaluated, we found that an extremely simple method performed best in all circumstances tested, was much faster to run, and was insensitive to parameter choices, making incorrect scientific conclusions much less likely.

    View Publication Page
    01/07/23 | Solving the spike sorting problem with Kilosort
    Marius Pachitariu , Shashwat Sridhar , Carsen Stringer
    bioRxiv. 2023 Jan 07:. doi: 10.1101/2023.01.07.523036

    Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, complicated by the non-stationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To solve the spike sorting problem, we have continuously developed over the past eight years a framework known as Kilosort. This paper describes the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a new version with substantially improved performance due to new clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework which uses densely sampled electrical fields from real experiments to generate non-stationary spike waveforms and realistic noise. We find that nearly all versions of Kilosort outperform other algorithms on a variety of simulated conditions, and Kilosort4 performs best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

    View Publication Page