Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

21 Janelia Publications

Showing 1-10 of 21 results
Your Criteria:
    01/15/20 | A genetic, genomic, and computational resource for exploring neural circuit function.
    Davis FP, Nern A, Picard S, Reiser MB, Rubin GM, Eddy SR, Henry GL
    eLife. 2020 Jan 15;9:. doi: 10.7554/eLife.50901

    The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.

    View Publication Page
    01/17/20 | Accelerated EM Connectome Reconstruction using 3D Visualization and Segmentation Graphs
    Philip M. Hubbard , Stuart Berg , Ting Zhao , Donald J. Olbris , Lowell Umayam , Jeremy Maitin-Shepard , Michal Januszewski , William T. Katz , Erika R. Neace , Stephen M. Plaza
    bioRxiv. 2020 Jan 17:. doi: 10.1101/2020.01.17.909572

    Recent advances in automatic image segmentation and synapse prediction in electron microscopy (EM) datasets of the brain enable more efficient reconstruction of neural connectivity. In these datasets, a single neuron can span thousands of images containing complex tree-like arbors with thousands of synapses. While image segmentation algorithms excel within narrow fields of views, the algorithms sometimes struggle to correctly segment large neurons, which require large context given their size and complexity. Conversely, humans are comparatively good at reasoning with large objects. In this paper, we introduce several semi-automated strategies that combine 3D visualization and machine guidance to accelerate connectome reconstruction. In particular, we introduce a strategy to quickly correct a segmentation through merging and cleaving, or splitting a segment along supervoxel boundaries, with both operations driven by affinity scores in the underlying segmentation. We deploy these algorithms as streamlined workflows in a tool called Neu3 and demonstrate superior performance compared to prior work, thus enabling efficient reconstruction of much larger datasets. The insights into proofreading from our work clarify the trade-offs to consider when tuning the parameters of image segmentation algorithms.

    View Publication Page
    01/22/20 | Accurate measurement of fast endocytic recycling kinetics in real time.
    Jonker CT, Deo C, Zager PJ, Tkachuk AN, Weinstein AM, Rodriguez-Boulan E, Lavis LD, Schreiner R
    Journal of Cell Science. 2020 Jan 22;133(2):. doi: 10.1242/jcs.231225

    The fast turnover of membrane components through endocytosis and recycling allows precise control of the composition of the plasma membrane. Endocytic recycling can be rapid with some molecules returning to the plasma membrane with a <5 minutes. Existing methods to study these trafficking pathways utilize chemical, radioactive, or fluorescent labeling of cell surface receptors in pulse-chase experiments, which require tedious washing steps and manual collection of samples. Here, we introduce a live-cell endocytic recycling assay, based on a newly designed cell-impermeable, fluorogenic ligand for HaloTag: 'Janelia Fluor 635i' (JFi; i=impermeant) which allows real-time detection of membrane receptor recycling at steady state. We used this method to study the effect of iron depletion on transferrin receptor (TfR) recycling using the chelator desferrioxamine. We found this perturbation significantly increases the TfR recycling rate. The high temporal resolution and simplicity of this assay provides a clear advantage over extant methods and makes it ideal for large scale cellular imaging studies. This assay can be adapted to examine other cellular kinetic parameters such as protein turnover and biosynthetic trafficking.

    View Publication Page
    01/01/20 | Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans.
    Bai X, Melesse M, Sorensen Turpin CG, Sloan D, Chen C, Wang W, Lee P, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen B, Cheerambathur D, Bembenek JN
    Development. 2020 Jan;147(1):1-16. doi: 10.1242/dev.181099

    While cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant embryonic divisions and found several reproducibly altered parameters at different stages. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, cytokinesis is implemented in a specialized way during epithelial polarization and Aurora B has a new role in the formation of the apical surface.

    View Publication Page
    01/09/20 | Bright and tunable far-red chemigenetic indicators.
    Deo C, Abdelfattah AS, Bhargava HK, Berro AJ, Falco N, Moeyaert B, Chupanova M, Lavis LD, Schreiter ER
    bioRxiv. 2020 Jan 9:
    01/08/20 | Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages.
    Li C, Li X, Bi Z, Sugino K, Wang G, Zhu T, Liu Z
    eLife. 2020 Jan 08;9:. doi: 10.7554/eLife.50491

    Inner ear cochlear spiral ganglion neurons (SGNs) transmit auditory information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: and . Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.

    View Publication Page
    01/17/20 | Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells.
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang C, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF
    Science. 2020 Jan 17;367(6475):. doi: 10.1126/science.aaz5357

    Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.

    View Publication Page
    01/16/20 | Cortical pattern generation during dexterous movement is input-driven.
    Sauerbrei BA, Guo J, Cohen JD, Mischiati M, Guo W, Kabra M, Verma N, Mensh B, Branson K, Hantman AW
    Nature. 2020 Jan 16;577(7790):386-91. doi: 10.1038/s41586-019-1869-9

    The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres. Local cortical dynamics are thought to shape these patterns throughout movement execution. External inputs have been implicated in setting the initial state of the motor cortex, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.

    View Publication Page
    01/10/20 | Fundamental law of memory recall.
    Naim M, Katkov M, Romani S, Tsodyks M
    Physical Review Letters. 2020 Jan 10;124(1):018101. doi: 10.1103/PhysRevLett.124.018101

    Human memory appears to be fragile and unpredictable. Free recall of random lists of words is a standard paradigm used to probe episodic memory. We proposed an associative search process that can be reduced to a deterministic walk on random graphs defined by the structure of memory representations. The corresponding graph model can be solved analytically, resulting in a novel parameter-free prediction for the average number of memory items recalled (R) out of M items in memory: R=sqrt[3πM/2]. This prediction was verified with a specially designed experimental protocol combining large-scale crowd-sourced free recall and recognition experiments with randomly assembled lists of words or common facts. Our results show that human memory can be described by universal laws derived from first principles.

    View Publication Page
    01/01/20 | Gas cluster ion beam SEM for imaging of large tissue samples with 10 nm isotropic resolution.
    Hayworth KJ, Peale D, Januszewski M, Knott GW, Lu Z, Xu CS, Hess HF
    Nature Methods. 2020 Jan 01;17(1):68-71. doi: 10.1038/s41592-019-0641-2

    We demonstrate gas cluster ion beam scanning electron microscopy (SEM), in which wide-area ion milling is performed on a series of thick tissue sections. This three-dimensional electron microscopy technique acquires datasets with <10 nm isotropic resolution of each section, and these can then be stitched together to span the sectioned volume. Incorporating gas cluster ion beam SEM into existing single-beam and multibeam SEM workflows should be straightforward, increasing reliability while improving z resolution by a factor of three or more.

    View Publication Page